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ABSTRACT

Estimating and Modeling Transpiration of a Mountain Meadow Encroached by

Conifers Using Sap Flow Measurements

Simon Joseph Marks

Mountain meadows in the western USA are experiencing increased rates of conifer

encroachment due to climate change and land management practices. Past research

has focused on conifer removal as a meadow restoration strategy, but there has been

limited work on conifer transpiration in a pre-restoration state. Meadow restoration

by conifer removal has the primary goal of recovering sufficient growing season soil

moisture necessary for endemic, herbaceous meadow vegetation. Therefore, conifer

water use represents an important hydrologic output toward evaluating the efficacy of

this active management approach. This study quantified and evaluated transpiration

of encroached conifers in a mountain meadow using sap flow prior to restoration by

tree removal. We report results of lodgepole pine transpiration estimates for an ap-

proximate 1-year period and an evaluation of key environmental variables influencing

water use during a dry growing season.

The study was conducted at Rock Creek Meadow (RCM) in the southern Cascade

Range near Chester, CA, USA. Sap flow data were collected in a sample of lodgepole

pine and scaled on a per-plot basis to the larger meadow using tree survey data within

a stratified random sampling design (simple scaling). These estimates were compared

to a MODIS evapotranspiration (ET) estimate for the meadow. The 1-year period

for transpiration estimates overlapped each of the 2019 and 2020 growing seasons

partially. The response of lodgepole pine transpiration to solar radiation, air temper-

ature, vapor pressure deficit, and volumetric soil water content was investigated by

calibrating a modified Jarvis-Stewart (MJS) model to hourly sap flow data collected

during the 2020 growing season, which experienced below average antecedent winter
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precipitation. The model was validated using spatially different sap flow data in the

meadow from the 2021 growing season, also part of a dry year. Calibration and vali-

dation were completed using a MCMC approach via the DREAM(ZS) algorithm and a

generalized likelihood (GL) function, enabling model parameter and total uncertainty

assessment. We also used the model to inform transpiration scaling for the calibration

period in select plots in the meadow, which allowed comparison with simple scaling

transpiration estimates.

Average total lodgepole pine transpiration at RCM was estimated between 220.57

± 25.28 and 393.39± 45.65 mm for the entire campaign (mid-July 2019 to mid-August

2020) and between 100.22 ± 11.49 and 178.75 ± 20.74 mm for the 2020 partial grow-

ing season (April to mid-August). The magnitude and seasonal timing were similar

to MODIS ET. The model showed good agreement between observed and predicted

sap velocity for the 2020 partial growing season (RMSE = 1.25 cm h-1), with me-

teorological variables modulating early growing season sap flow and volumetric soil

water content decline imposing transpiration decrease in the late growing season. The

model validation performed similarly to calibration in terms of performance metrics

and the influence of meteorological variables. The consistency of the declining volu-

metric soil water content effect during the late growing season between periods could

not be evaluated due to an abridged validation period. Overall, the implementation

GL-DREAM(ZS) showed promise for future use in MJS models. Lastly, the model

derived transpiration estimates for the 2020 partial growing season showed some of

the potential utility in using the MJS model to scale sap flow at the study locale. It

also highlights some of the key limitations of this approach as it is executed in the

present study.
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CHAPTER 1: INTRODUCTION

Mountain meadows comprise a small proportion of the Sierra Nevada and Cas-

cade landscape, but their hydrologic and ecologic function make them indispensable

environmental features. Among other functions, meadows promote biodiversity in

forest ecosystems and enhance water storage in upper watersheds (Viers et al., 2013).

The last century, however, has seen meadows in these regions degrade by conifer

encroachment, referring to the replacement of meadow vegetation by conifer forest

(Dailey, 2007; Stillwater Sciences, 2012; Takaoka and Swanson, 2008; Taylor, 1995;

Vale, 1981). Meadow degradation typically results in drier soils with less organic mat-

ter, lowered water tables, and changes in vegetation species (Ratliff, 1985; Viers et al.,

2013). The past and ongoing decline of meadows due to conifer encroachment suggest

implementation of active management restoration techniques to preserve these envi-

ronments (Lang and Halpern, 2007; Swanson et al., 2007; Stillwater Sciences, 2012;

Surfleet et al., 2020).

One restoration approach is conifer removal, which is thought to increase both sea-

sonal soil moisture and seasonal water table levels by reducing water losses through

interception and evapotranspiration (ET) (Fie, 2018; Surfleet et al., 2019, 2020). This

change in hydrology is envisioned to facilitate the return of meadow vegetation species

that are largely controlled by soil water, thus encouraging biodiversity (Mitsch and

Gosselink, 2000; Stillwater Sciences, 2012; Swanson et al., 2007). A holistic under-

standing of the hydrologic impact of conifer removal restoration requires considera-

tion of all inputs, outputs, and storage of water within a meadow system before and

after restoration. Conifer transpiration represents a water output part of the pre-

restoration baseline; however, past studies have not explicitly measured this quantity.
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Measuring conifer transpiration by a direct method could enable partitioning of

ET in a meadow water budget and a nuanced comparison of ET before and after

conifer removal restoration. Recently, Surfleet et al. (2020) published results high-

lighting changes in hydrology in a southern Cascades meadow 4 years following re-

moval of lodgepole pine. Before and after restoration water budgets showed little

change in soil ET suggesting relatively similar transpiration from newly established

meadow vegetation compared to the removed conifers. ET was estimated based on a

water balance approach from field data.

Determination of conifer transpiration also provides a basis for the amount of

water that will be placed back into storage with tree removal in addition to poten-

tial water increases due to decreased canopy interception (Surfleet et al., 2020). This

information would be useful in determining the capacity for meadow vegetation recov-

ery following restoration, a primary goal of restoration efforts. Herbaceous meadow

vegetation establishment is thought to be largely a function of soil water content and

depth to groundwater (Hammersmark et al., 2009, 2010; Loheide and Gorelick, 2007).

Meadows degraded by woody vegetation (not conifers) have shown lower ET rates

relative to their restored counterparts with herbaceous vegetation, further substanti-

ating a need for sufficient soil water availability in meadow recovery (Hammersmark

et al., 2008; Loheide II and Gorelick, 2005).

Lastly, conifer transpiration measurement enables potential insights into how this

quantity is modulated by the hydrologic and climatic characteristics of the meadows

they encroach. This is important in the context of increasingly variable precipitation

and changing snowmelt regimes in the western USA, with snow generally expected to

melt earlier with warming climate (Mote et al., 2018; Musselman et al., 2017). This

is relevant to mountain meadows, as they are characterized by shallow groundwa-

ter and high soil moisture, with water inputs originating from the snowpack (Lowry

et al., 2011; Ratliff, 1985). Changes in snowmelt amount and timing due to climate
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change has impact on the growing season length, with soil moisture expected to recede

earlier seasonally (Harpold, 2016). Understanding the soil moisture modulation on

meadow conifer transpiration throughout the growing season is important for future

water budget evaluations of conifer encroached meadows, especially in light of antic-

ipated increases in hydrologic variability. Climate and energy variables such as air

temperature, vapor pressure deficit, and solar radiation also exert controls on conifer

transpiration (e.g., Cooper et al., 2020; Link et al., 2014; Pataki et al., 2000). Simi-

lar to soil moisture control, our knowledge of climatic and energy drivers of meadow

conifer transpiration is insufficient given increasing temperatures and climatic vari-

ability. Generally speaking, mountain meadows in the Sierra Nevada and southern

Cascades are considered highly vulnerable to a changing climate (Albano et al., 2019;

Hauptfeld et al., 2014).

Heat pulse based sap flow instruments provide a means to measure tree transpi-

ration. The instrumentation measures sap velocity [L T-1] using heat based sensors

in individual trees, enabling tree and stand-scale estimates of volumetric sap flow [L3

T-1] and transpiration (Forster, 2017; Steppe et al., 2010). The conversion of sap ve-

locity to transpiration at these spatial scales requires substantial assumptions about

tree wound response to instrument installation, sapwood area, and sapwood thermal

properties (Forster, 2017; Looker et al., 2016). Scaling transpiration to the stand

or landscape level is typically accomplished using the average sap velocity derived

from a small sample of trees coupled with an estimate of stand/landscape sapwood

area (e.g., Granier et al., 1996; Moore et al., 2004; Solum, 2020; Wilson et al., 2001;

Wullschleger et al., 2001). This approach assumes that tree transpiration is spatially

well mixed, without consideration of environmental variables that influence tree water

use (e.g., soil moisture, micro-climates) that are spatially heterogeneous.

This thesis presents results from monitored conifer sap flow in a mountain meadow

prior to its restoration by tree removal. The study site, Rock Creek Meadow (RCM), is
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a historical meadow located in the southern Cascade Range, which was encroached by

Pinus contorta ssp. murrayana (lodgepole pine) at the time of the research. The goal

of the work was to estimate lodgepole pine transpiration in RCM for an approximate

1-year period and to investigate environmental drivers of lodgepole pine transpiration

during a dry growing season. The work features the following objectives:

1. Measure heat ratio method sap flow in a sample plot of lodgepole pine and

apply data correction to address sapwood properties, probe misalignment, and

tree wound response.

2. Scale sap flow data to transpiration on a per plot basis throughout the larger

meadow via a simple scaling approach based on average sap velocity and tree

survey data.

3. Compare the simple scaling lodgepole pine transpiration estimates to remote

sensing-based moderate resolution imaging spectroradiometer (MODIS) ET es-

timates.

4. Calibrate and validate a MJS model to assess the response of lodgepole pine

transpiration to environmental drivers and predict transpiration, both during a

dry growing season.

The sap flow measurement, sap flow scaling, MODIS comparison, and MJS model

presented in this work will be useful to studies that seek to study the impact of

vegetation removal restoration on mountain meadows and similar environments. Fu-

ture work will integrate the lodgepole pine transpiration estimates into RCM’s pre-

restoration water budget, as part of a larger study that will examine changes in

hydrology and vegetation communities following conifer removal restoration at the

meadow. To our knowledge sap flow measurement has not been applied toward a

meadow restoration oriented research problem. Moreover, comparisons of sap flow
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based lodgepole pine transpiration to MODIS ET estimates will allow comment on

the precision of this approach, broadening the reach of this work to sap flow prac-

titioners in general. We also hope that our use of a Markov Chain Monte Carlo

(MCMC) approach via the DiffeRential Evolution Adaptive Metropolis (DREAM)

algorithm and a generalized likelihood (GL) function to fit the MJS model is helpful

toward Jarvis-type transpiration (and stomatal conductance) modeling efforts. As

a whole, the work contributes scientifically-defensible information needed for land

managers and other stakeholders to make informed restoration decisions regarding

mountain meadows encroached by conifers.
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CHAPTER 2: LITERATURE REVIEW

2.1 Background and Objective of Review

Changes in climate and land management decisions in the western USA have re-

sulted in mountain meadows with increased depth to the groundwater and decreased

soil moisture triggering a succession of meadow vegetation to woody plant species

(Cooper et al., 2006; Loheide et al., 2009). It is well documented over the last cen-

tury that mountain meadows in the Sierra Nevada and Cascade ranges have decreased

drastically in quantity and quality due to conifer encroachment (Takaoka and Swan-

son, 2008; Taylor, 1990; Vale, 1981; Vankat and Major, 1978). Pinus contorta ssp.

murrayana (lodgepole pine) is the prevalent conifer species encroaching meadows in

these regions. Existing research suggests the number of conifer encroached meadows

will increase in the future, largely due to climate change (Lubetkin et al., 2017; Miller

and Halpern, 1998; Viers et al., 2013). Concerned with the pace of meadow loss, fed-

eral land managers have implemented meadow restoration strategies that include tree

removal. However, the efficacy of this approach is not well understood, especially the

impact of restoration on meadow hydrology. Evapotranspiration (ET) from conifer

encroached meadows is crucial to understanding the water balance of these landscape

features prior to restoration. Measurement of conifer sap flow can enhance the un-

derstanding of the ET component of the meadow hydrologic cycle in this degraded

state.

The primary mechanism that connects encroached conifers and meadow hydrology

is transpiration. Conifers typically feature as the dominant vegetation and accord-

ingly contribute heavily toward the meadow ET flux. The amount of water used by

conifers is imperative information to computing the meadow water balance and un-
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derstanding the hydrologic implications of vegetation removal. Sap flow has emerged

as a practical approach to approximate transpiration in larger trees and thus presents

opportunity to quantify conifer transpiration in a meadow setting. A variety of sap

flow methods exist; however, not all are well suited to measure sap flow in conifers

such as lodgepole pine. Furthermore, sap flow methods have several potential error

sources that require mitigation to ensure sound transpiration estimates for individ-

ual trees. Sap flow measurements in individual trees are scaled to approximate the

landscape transpiration flux via a bottom-up approach. Transpiration, however, is

spatially heterogeneous due to variability in vegetation composition, energy/climate,

and soil moisture content across the larger landscape. A sap flow scaling approach

would ideally incorporate all these facets, but this is typically not done.

The major objective of this literature review is to inform a sound application of

sap flow methods to quantify the transpiration flux of lodgepole pine in a mountain

meadow encroached by this species. The first half of the review will address moun-

tain meadows, conifer encroachment, and the state of knowledge regarding mountain

meadow ET. The second half of the review will focus on heat pulse based sap flow

methods and commonly used approaches to scale sap flow measurements made in in-

dividual trees to larger land areas. An emphasis is put on potential error sources that

can hinder the accuracy of these approaches. Characteristics of lodgepole pine and

conifer trees relevant to sap flow measurements are also incorporated into these sec-

tions. The surveyed literature will aid interpretation of results, elucidate limitations,

and highlight improvement areas for the present study.

2.2 Mountain Meadows and Conifer Encroachment

Mountain meadows are found at elevations exceeding 500 meters above mean

sea level (amsl) in mountainous terrain (Viers et al., 2013; Weixelman et al., 2011).
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They are ecosystems defined by a unique combination of hydrologic, vegetative, and

geomorphic conditions (Viers et al., 2013). According to Weixelman et al. (2011), a

broad definition of a meadow is a groundwater-dependent ecosystem type dominated

by herbaceous plant species where woody vegetation may be present, which supports

plants that use surface water and/or shallow groundwater at some point during the

growing season. Meadows in the Cascades and Sierra Nevada often appear as small,

secluded habitats and are estimated to comprise less than than 1% of the total area

in this region (Viers et al., 2013). They contain biologic communities that differ from

those of the surrounding forest matrix and accordingly contribute disproportionately

to the biodiversity of the regions they occupy (Hickman, 1976). In addition to their

role as biodiversity hubs, meadows provide functions including flood attenuation,

water storage, late season baseflow, water filtration, nitrogen attenuation, and carbon

sequestration (Hammersmark et al., 2008; Hill and Mitchell-Bruker, 2010; Loheide

et al., 2009; Norton et al., 2011).

While mountain meadows provide many ecosystem services, they are incredibly

sensitive environments to climate and land use influence. Historic livestock graz-

ing, drainage, and other land management decisions have contributed to degradation

pathways that alter the meadow hydrology, geomorphology, and/or vegetation com-

munities. In the context of meadows, the term degradation implies that their structure

and processes are altered to the point that the functions they provide to the greater

landscape are impaired (Stillwater Sciences, 2012). Meadow structure and processes

are largely controlled by hydrology, so degradation is typically linked to a hydrologic

alteration. The most commonly documented degradation pathways for meadows in

the literature include channel incision and widening (e.g., Hammersmark et al., 2008;

Lindquist and Wilcox, 2000; Loheide et al., 2009; Stillwater Sciences, 2012) and inva-

sion of meadows by upland vegetation including sagebrush scrub and conifers (e.g.,
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Berlow et al., 2002; Stillwater Sciences, 2012; Ratliff, 1985; Vale, 1981; Vankat and

Major, 1978).

The invasion of mountain meadows by conifer forest is a widely documented phe-

nomenon in the western USA. Over the past century invasion has been observed in

Colorado Plateau (e.g., Moore and Huffman, 2004), Rocky Mountains (e.g., Dyer and

Moffett, 1999; Vale, 1978), Sierra Nevada (e.g., Helms, 1987; Millar et al., 2004; Vankat

and Major, 1978), and Cascade Range (e.g., Taylor, 1990; Vale, 1981). Takaoka and

Swanson (2008) investigated the change in areal extent of mountain meadows and

shrub fields in the central western Cascade Range and reported the total area of

these patches decreased from 5.5% of the study area in 1946 to 2.5% in 2000. Here

it was observed that mesic (wetter) and xeric (drier) meadows with adjacent conifer

forest most commonly underwent forest succession. Dailey (2007) reported a similar

percentage of meadows lost to conifer encroachment in the Chucksney-Grasshopper

complex, located in the Willamette National Forest (OR, USA), between 1946 and

2005. With regards to meadows in the Sierra Nevada, D’Antonio et al. (2002) re-

ported that approximately 60% of meadows in Sequoia and Kings Canyon National

Park and approximately 42% of meadows in the Lake Tahoe Basin, contain both

saplings and seedlings of lodgepole pine.

Pinus contorta ssp. murrayanaa, henceforth lodgepole pine, is the conifer species

commonly documented to invade mountain meadows in the Sierra Nevada and Cas-

cade Range (D’Antonio et al., 2002; Helms, 1987; Taylor, 1990; Vale, 1987). In the

northern Sierra Nevada, lodgepole pine typically dominate forests at elevations of

about 1830 to 2400 m amsl (Fites-Kaufman et al., 2007). Lodgepole pine is also

ubiquitous in the upper montane zone of the southern Cascades. Here it grows in

monospecific and mixed stands with red fir (Abies magnifica var. magnifica), white fir

(Abies concolor), and Jeffrey pine (Pinus jeffreyi) at elevations of approximately 1900

to 2200 m amsl (Parker, 1991). While the upper montane zone is where lodgepole
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pine is most abundant in both these regions, the species can appear in large numbers

at lower and higher elevations (lower montane and sub-alpine zones). This tree is

robust to topographical and soil conditions that typically limit other conifer species.

It thrives in a wide variety of topographic positions ranging from gentle slope and

basins to steep slopes and ridges (Lotan and Critchfield, 1990). Lodgepole pine can

grow in infertile soils, although this may limit potential growth. The species does best

in moist soils, but can tolerate a wide variety of hydrologic conditions including high

watertable environments with poor soil aeration (Cochran, 1972; Lotan and Critch-

field, 1990; Minore, 1970). This enables lodgepole pine to strongly establish itself

around the margins of mountain meadows, positioning it to encroach when provided

the appropriate driver(s) (Gross and Coppoletta, 2013; Ratliff, 1985).

The transition area between meadows and conifer forest is sensitive to variation

in land use and environmental factors. Climate change effects (e.g., Lubetkin et al.,

2017; Millar et al., 2004; Viers et al., 2013), fire suppression (e.g., Hadley, 1999; Tay-

lor, 1990), grazing activity (e.g., Gross and Coppoletta, 2013; Miller and Halpern,

1998; Vale, 1981; Vankat and Major, 1978), and positive feedback loops among en-

croaching trees and other biotic and abiotic components are four non-exclusive causes

for conifer encroachment. Examples of the fourth listed cause include alteration of

soil characteristics and canopy shade that facilitate tree establishment (e.g., Griffiths

et al., 2005; Rice et al., 2012). In Lassen National Park (CA, USA), located closely to

Rock Creek Meadow (the location for this study), conifer encroachment into meadows

accelerated following cessation of grazing and burning associated with park establish-

ment between 1916 and 1933 (Taylor, 1990). Studies that have reconstructed patterns

of conifer encroachment in individual meadows have observed considerable variability

in the strength of individual factors and their interaction with one another influenc-

ing invasion through space and time (Lubetkin et al., 2017; Miller and Halpern, 1998;

Norman and Taylor, 2005). Generally, lower elevation meadows have a more complex
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land use history than higher elevation meadows and have shown greater correlation of

encroachment with land disturbances (Gross and Coppoletta, 2013; Norman and Tay-

lor, 2005). The high variability in hypothesized drivers highlights the importance of

understanding differences in physical environment, vegetation, and land management

history between meadows at different scales.

Understanding the importance of climate variability across different spatial and

temporal scales in promoting conifer encroachment is of current interest, as we face

warming temperatures and declining snowpack in the Sierra Nevada and Cascade

range (Mote et al., 2018; Reich et al., 2018; Surfleet and Tullos, 2013). Warming

temperatures and reduced snow is expected to cause decreased ground and surface

water inputs and increased ground and surface water losses via ET in these regions.

In areas containing conifer encroached meadows where land disturbance has been his-

torically absent (typically higher elevation meadows), climate is hypothesized as an

important driver given the control it exerts on meadow hydrologic regime and growing

season duration (Lubetkin et al., 2017; Miller and Halpern, 1998). For example, in a

landscape-scale study of conifer encroachment into Sierra Nevada sub-alpine mead-

ows, climate factors contributing to a drier hydrologic regime were sufficiently able

to explain differences in conifer density among meadows (Lubetkin et al., 2017). The

same study provided evidence that climate explained historic variation in the recruit-

ment timing of conifers to meadows, mainly by controlling conifer seed production

and establishment. More research is needed to close knowledge gaps pertaining to

the relative importance of warmer temperatures versus lower snowpack in conifer es-

tablishment to accurately estimate levels of conifer invasion risk alongside climate

projections. It is conservatively anticipated that with reduced hydrologic input by

snow, early season soil drying will be increased and the growing season lengthened,

which makes meadow environments more vulnerable to conifer invasion (Harpold,
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2016; Lubetkin et al., 2017; Miller and Halpern, 1998; Petrie et al., 2016; Viers et al.,

2013).

2.3 Evapotranspiration in Mountain Meadows

ET is a significant part of the meadow water balance, making a substantial return

of water inputs to the atmosphere. Possible water inputs to mountain meadows,

stemming mostly from snowfall, include local infiltration and recharge, recharge from

the greater basin, and recharge from watercourses (Lowry et al., 2011). ET includes

the water that evaporates from plant surfaces and soil (evaporation) and the water

that moves from soil through plant roots eventually exiting through the stomata as

water vapor (transpiration) (Allen et al., 1998; Ward and Trimble, 2016). Depending

on the environment type, transpiration can be the dominant component of ET. One

meta analysis found 13 studies that portioned transpiration from ET in temperate

coniferous forests and found on average 55% (±15%, 1 s.d.) of ET was transpiration

(Schlesinger and Jasechko, 2014). ET is controlled spatially and temporally by the

dynamic inter-play between climatic, edaphic, and biotic (largely vegetation) factors.

Ultimately, the variability in these factors contributes heavily to interannual or the

seasonal variation of ET within and between individual meadows. This section will

advance a discussion about the climatic, edaphic, and biotic (vegetative) controls

that can impact ET in mountain meadow environments. The section will also discuss

examples of past studies that have quantified ET for mountain meadows, including

meadows encroached by conifer trees or other woody vegetation.

2.3.1 Climatic controls

ET is influenced by a variety of climatic factors. The rate of transpiration usually

increases with increases in solar radiation, vapor pressure deficit, air temperature, and

12



wind speed. It usually decreases with increases in relative humidity, leaf wetness, and

precipitation (Allen et al., 1998; Ward and Trimble, 2016). The parameters influenc-

ing transpiration do so by contributing to the total amount of energy available to be

partitioned into latent heat (Moore and Heilman, 2011). Increases in the evaporation

rate tend to coincide with the same climatic variables increasing the transpiration

rate, as these facilitate an increased vapor pressure deficit between the evaporating

surface and the surrounding atmosphere.

The high seasonality of precipitation in the Sierra Nevada and Cascades results

in the driest portion of the year corresponding with the growing season. For meadow

settings in these regions, the growing season is defined as the period when herbaceous

plants are actively growing, typically April or May through August annually (e.g.,

Hammersmark et al., 2010; Loheide et al., 2009; Surfleet et al., 2019). The growing

season provides meteorological conditions associated with high available energy for

ET, as well as plant available soil moisture from snowmelt. Consequently, the meadow

ET flux is highest with peak rates during this period relative to the rest of the year

(Loheide II and Gorelick, 2005; Lucas, 2016). The control exerted by climatic variables

on ET is the most pronounced when other factors that could potentially limit ET

are not an issue. In meadow environments, inadequate soil water availability can

constrain ET, especially the sub-process of transpiration. When soil moisture is non-

limiting, the ET rate is expected to mirror the potential evapotranspiration (PET)

rate, which is largely regulated by available energy (Lucas, 2016; Moore and Heilman,

2011). The actual ET rate would be expected to diverge from PET in the later months

of the growing season as soil moisture dwindles and water becomes limited.
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2.3.2 Edaphic controls

Soil water availability is a major constraint for ET. It is mediated by edaphic fac-

tors such as soil depth, soil water holding capacity, and soil hydraulic conductivity.

Meadows are highly groundwater dependent systems and support vegetation commu-

nities using surface water or groundwater during the growing season; this is evidenced

by ET induced water-table fluctuations in wet meadow environments in the Sierra

Nevada and Cascade ranges (Allen-Diaz, 1991; Loheide et al., 2009; Weixelman et al.,

2011). Many authors have shown that groundwater depth (GWD) is highly correlated

with vegetation community type in meadow systems (Allen-Diaz, 1991; Dwire et al.,

2004; Hammersmark et al., 2009; Loheide and Gorelick, 2007). Shallow watertables

support wet meadow vegetation (obligate or faculative species), while deeper waterta-

bles support xeric vegetation indicative of a dry meadow. The relationships along this

hydrologic gradient are further controlled by temporal fluctuations in the watertable

(e.g. the period of high groundwater, rate of watertable declines, total range of GWD)

during the growing season and individual plant hydrophysiology (e.g., plant oxygen

and water stress tolerance) (Castelli et al., 2000; Dwire et al., 2006; Hammersmark

et al., 2009; Lowry et al., 2011). Past work has shown that wet meadows generally

exhibit a greater ET flux than their dry counterparts because of decreased GWD dur-

ing the growing season and increased evaporation of standing water (Hammersmark

et al., 2008; Loheide II and Gorelick, 2005). This suggests that ET in wet meadow

environments is largely constrained by energy availability, at least throughout the

period of growing season where vegetation can access groundwater.

The relative importance of the edaphic factors controlling the amount and timing

of ET during the late growing season in mountain meadows is not well understood.

These factors are those that influence soil water availability in the vadose zone and

interactions at the capillary fringe (Loheide et al., 2005, 2009). During the late
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growing season, when the watertable declines due to transpiration and groundwater

discharge to streams, plant water availability is predicated on the volume of water in

the unsaturated zone. For example, the volume of water available for uptake following

watertable decline is greater in finer textured soils that facilitate a larger capillary

fringe, stronger upward hydraulic gradient, and higher water retention in micropores

relative to coarser textured soils (Loheide et al., 2009; Steinwand et al., 2006). This

range of fine to coarse soils excludes high clay textured soils because these do not

typically appear in meadows. The partitioning of plant water uptake between soil

water and groundwater during the growing season for different watertable depths and

vegetation assemblages is not extensively studied in meadow environments. One study

in the Owens Valley (CA, USA) found groundwater accounted for 20 to 30% of ET

from shrubs, but 60 to 80% of ET from high-cover meadows with groundwater 1 to 3

meters beneath the surface (Steinwand et al., 2006). This suggests a higher percentage

of ET as groundwater use would be expected in a hydrologically functioning wet

meadow, as compared to a dry meadow or one degraded by upland vegetation invasion.

Edaphic variables would likely drive the variation in ET in the latter because of limited

water; however, this may not be the case if the dry meadow vegetation were able to

access deeper soil water (Moore and Heilman, 2011).

2.3.3 Biotic (vegetation) controls

The type, amount, and spatial distribution of vegetation assemblages ultimately

cause local variation in ET across any ecosystem. This subject is poorly studied in

mountain meadow environments, despite the heterogeneity of vegetation in meadows

largely consequence of shrub and conifer encroachment. What follows, therefore, is a

qualitative discussion of the vegetation controls that have potential to influence local

variation in ET in heterogeneously vegetated meadows based on research in other
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ecosystems/regions. The discussion is broken into how spatial variation in vegetation

can generally influence the sub-processes of transpiration and evaporation.

With regards to transpiration, this sub-process will vary at a fine-scale if vegeta-

tion patches vary in their ability to partition available energy into latent heat and

access available water (Moore and Heilman, 2011). Variation in vegetation amount

and structure dictate differences in energy balance partitioning (e.g., leaf area, root-

ing depth); however, abiotic factors can also constrain the partitioning of energy into

latent heat, such as water retention in the root zone (Litvak et al., 2010; Moore and

Heilman, 2011). Differences in water availability will be recognized if differences in

rooting depths or other plant hydraulic properties exist between vegetation patches

(Moore and Heilman, 2011; Moore et al., 2012). For example, woody vegetation tend

to root deeper than herbaceous plants (Schenk and Jackson, 2002). Soil properties

and soil depth, however, can limit rooting. In a scenario where properties of the

sub-surface limited rooting depth, it is possible that transpiration would be similar

across the landscape despite different vegetation types because of similar available

water in the root zone (Porporato et al., 2002). This ultimately is an instance where

a heterogeneity in vegetation communities across the landscape do not translate into

heterogeneity in transpiration.

The affect of vegetation on evaporation is generally less complex than it is on

transpiration. The amount and density of vegetation ultimately impact soil evapora-

tion and interception loss. Past studies have shown correlations between vegetation

density and variations in near-ground solar radiation, soil temperature, and potential

evaporation (Breshears and Ludwig, 2010; Raz-Yaseef et al., 2010; Veatch et al., 2009).

Most of these works focus on the affect canopy cover has on these processes. Intercep-

tion, which is also correlated with canopy cover, ultimately increases evaporation and

decreases water inputs from precipitation into the system. Overall, this highlights the
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potential of upland vegetation in mountain meadows to impact processes impacting

the water and energy budgets of these systems.

2.3.4 ET quantification examples for mountain meadows

Few studies have quantified the ET flux for dry and wet meadows in the Sierra

Nevada and Cascade Range. This state variable is typically included in the context

of meadow restoration. Furthermore, no single methodology for computing ET is

used across existing studies. Loheide II and Gorelick (2005) quantified daily ET for

paired degraded and pond-and-plug restored meadows along Last Chance Creek in

the Feather River Watershed (CA, USA) using their high-resolution evapotranspira-

tion mapping algorithm (ETMA) derived. The study reported a peak ET flux of 1.5

to 4 mm/d in the dry meadow setting dominated by upland vegetation community

(degraded) and a peak ET flux of 5 to 6.5 mm/d in the wet meadow setting domi-

nated by sedges and rushes (restored) (Table 2.1). The approximate doubling of the

daily ET flux between the degraded and restored meadows corresponded with future

findings by Hammersmark et al. (2008) that pond-and-plug restored wet meadows

have higher rates of ET compared to a degraded state. ET by Hammersmark et al.

(2008) was calculated using the MIKE SHE modeling system. More recent work by

Lucas (2016) quantified daily ET for a wet mountain meadow in the Sierra Nevada

using an eddy flux station during two growing seasons (Table 2.1). Daily ET was

similar to PET and ranged from 0 to 7 mm/d, with the highest rates between June

and August (Figure 2.1). The ET flux quantities from the studies by Loheide II and

Gorelick (2005), Hammersmark et al. (2008), and Lucas (2016) are summarized in

Table 2.1.

The ET output of mountain meadows invaded by conifers has only been explored

to a limited extent. Evaluation of the hydrologic impact of conifer removal on meadow
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Figure 2.1: Daily and 30-minute ET values measured by the eddy flux station and
plotted with daily PET for instrument deployments from April 28 through August
5, 2013 (top) and July 1 through October 1, 2014 (bottom) (excerpted from Lucas
(2016)).
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Table 2.1: ET flux estimates for wet, degraded, and restored mountain meadows
reported in the literature.

ET

Study Wet Meadow Degraded Meadow Restored Meadow

Loheide and Gorelick (2005) – 1.5 - 4 mm/d 5 - 6.5 mm/d

Hammersmark et al. (2008) – 419 - 530 mm/yr 626 - 661 mm/yr

Lucas (2016) 366 mm/yr – –

Surfleet et al. (2020) – 457 - 482 mm/yr 399 - 425 mm/yr

hydrology was assessed by Lesh (2010) via a modeling approach. This study estimated

the lodgepole pine transpiration rate during summer months with a modified version

of the Penman-Monteith (PM) equation derived for conifers. The monthly rates were

used in groundwater model simulations of tree removal, which suggested decreased

GWD in the meadow after restoration. The accuracy of transpiration estimates was

limited by data availability; the climate data used in the PM equation was not di-

rectly local to the meadow site and the lodgepole pine leaf area index may have been

overestimated given the available remote sensing data. Furthermore, the tree removal

groundwater simulations did not factor in the continued ET by non-woody vegetation

following restoration.

The hydrologic response of mountain meadows to lodgepole pine removal, includ-

ing ET, has also been assessed via direct comparisons of pre and post-restoration

meadow hydrology using field measurements across years (Fie, 2018; Sanford, 2016;

Surfleet et al., 2019, 2020; Van Oosbree, 2015). Surfleet et al. (2020) developed pre

and post-restoration relationships for soil moisture and GWD between two southern

Cascade meadow sites, one evaluated for hydrologic change due to conifer removal

(treatment) and the other restored prior to the study (control). Linear regression

analysis supported a consistent trend of lower soil moisture during the dry season,

but higher soil moisture during the wet season for the treatment meadow relative to
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its pre-restoration state. The GWD regression analysis showed an average decrease

of 0.15 m (range 0.08–0.23 m) for the four years monitored post-restoration in the

treatment meadow compared to before restoration. A comparison of meadow ET,

computed using a soil moisture fluctuation approach similar to a single layer single

step calculation, showed a decreased rate between the degraded and restored states

(Table 2.1). The ET decrease after restoration was attributed to diminished inter-

ception, which supported the temporal trends in soil moisture and GWD following

conifer removal.

2.4 Heat Pulse Based Sap Flow Methods

Sap flow sensors provide a means to measure transpiration in trees. The term sap

flow, as it relates to transpiration, refers to the movement of fluids through the tree

xylem, parallel to the axis of the tree bole. Sap flow is measured using thermomet-

ric methods based on heat convection and conduction (Swanson, 1994). Therefore,

estimates of tree transpiration from sap flow are derived from measurements of heat

transfer and movement within the xylem (Forster, 2017). There exist several types of

methods that use heat as a tracer to measure sap flow, but in entirely different ways.

These include thermal heat balance, thermal dissipation, and heat pulse methods

(Forster, 2017; Smith and Allen, 1996). The thermal heat balance and dissipation

method classes rely on continuous heating to measure mass heat flow, while heat pulse

methods involve instantaneous heating (hence pulse) to measure heat velocity. For

the purposes of this literature review, only heat pulse based methods are discussed.

Heat pulse based sap flow methods rely on a timed transport of a heat pulse from

a heat source to a point downstream (upward on the plant stem) in the sapwood

to approximate heat velocity (vh) [L T-1]. Generally, these methods use a heater to

deliver a short heat pulse directly into the tree sapwood. The temperature increase is
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measured by thermocouple(s) inserted radially into the sapwood as to calculate a vh.

Because vh represents both convection and conduction of heat through the sapwood,

vh is converted to sap velocity (vs) accounting for sapwood and fluid properties.

Theseproperties include sapwood moisture content, basic density of sapwood and

water, and specific heat capacity of sapwood and sap (Barrett et al., 1995; Becker and

Edwards, 1999). Volumetric sap flow (Q) can then be estimated for an instrumented

tree by multiplying vs by the area of sapwood (Forster, 2017).

Marshall (1958) established much of the theoretical framework behind heat pulse

based sap flow methods using a two probe configuration with an implanted heater

and downstream temperature sensor, although the first reference to a heat pulse

method was made by Huber (1932). The work developed an analytical solution to

the conduction equation including convection by sap within an infinite medium given

by

T =
Q

4πα
exp

(
−(x− vht)

2 + y2

4αt

)
, (2.1)

where T is temperature rise measured at the thermocouple at a distance of r =√
(x2 + y2), Q is heat from the heat pulse, α is thermal diffusivity [L2 T-1], t is time

since application of the heat pulse, and vh is heat pulse velocity. Marshall (1958)

solved Equation 2.1 using various time and temperature combinations to determine

vh. Other authors have solved Equation 2.1 for other time-temperature and sensor

spacing configurations, hence yielding a variety of heat pulse based sap flow em-

pirical methods. Notable and widely used methods include the compensation heat

pulse method (CHPM), T-max method, and heat ratio method (HRM) (Fernández,

2017; Swanson, 1994). The various heat pulse based methods have been developed

mainly to accommodate varying rates of sap flow among woody plants and mitigate

measurement error.
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The CHPM was developed by Closs (1958) and further developed by Swanson

(1962) in order to consider the effect of both convection by moving sap and the

thermal conduction of heat within sapwood. Swanson (1962) proposed a three-probe

configuration with a central line heater between two temperature sensors spaced 5

mm upstream and 10 mm downstream. With this sensor configuration, vh is obtained

by

vh =
xd + xu

2t0
, (2.2)

where xd is the distance between the heater and the downstream temperature sensor,

xu is the distance between the heater and the upstream temperature sensor (a negative

distance), and t0 is the time after the heat pulse when the registered temperatures

at the upstream and downstream sensors are equal. No term is needed for thermal

properties in Equation 2.2 because the presence of an upstream probe removes the

effect of sapwood heat conduction (Swanson, 1962).

The T-max method was developed by Cohen et al. (1981) with a two-probe config-

uration consisting of a line heater and temperature sensor located 15 mm downstream.

Cohen et al. (1981) adapted the analytical theory developed by Marshall (1958) to

calculate vh by

vh =

√
x2 − 4αtm

tm
, (2.3)

where x is the distance between the heater and the downstream temperature sensor,

α is thermal diffusivity, and tm is the time to maximum temperature rise measured

by the downstream temperature sensor following a heat pulse.

The HRM was developed to provide better approximations of very slow rates and

reverse sap flow. Both the CHPM and T-max have been shown to overestimate sap

flow at low flows (Becker, 1998). Marshall (1958) laid the initial groundwork for a

method to measure slow rates of flow by proposing a three-probe configuration where

temperature is recorded at two equidistant points above and below an in line heater.
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The work stated vh is calculated by

vh =
α

x
ln

(
∆Td

∆Tu

)
, (2.4)

where α is thermal diffusivity, x is the distance from the heater to a temperature

probe, ∆Td is the temperature rise in the downstream probe, and ∆Tu is the tem-

perature rise in the upstream probe. Burgess et al. (2001) expanded on Marshall

(1958) and formally proposed the HRM with vh calculated by Equation 2.4. This

work included pertinent operational details of the HRM including probe spacing (0.6

cm), measurement time following the heat pulse, correction for tree wounding, and

correction for probe misalignment.

2.5 Heat Pulse Based Sap Flow Error Sources

Sap flow at the individual tree level has been largely found to underestimate

tree transpiration when using both heat pulse and continuous heat based approaches

(Forster, 2017; Peters et al., 2018; Steppe et al., 2010). The underestimation is a result

of errors associated with the theoretical and empirical equations that aim to directly

estimate transpiration from thermal based measurements. Steppe et al. (2010) re-

ported the least amount of error in sap flow measurements to be associated with the

vh based CHPM compared to two thermal heat balance methods, namely thermal

dissipation and heat field deformation. More recently, a meta-analysis performed by

Forster (2017) collected data from every peer-reviewed published paper where tran-

spiration measured by heat pulse based methods was tested against an independent

measure of plant water use. Statistical analyses showed that heat pulse methods have

high precision, but a bias towards underestimating transpiration with an average er-

ror of 34.706% across all methods (Table 2.2). The study also showed that the HRM

and Sapflow+ methods had the least amount of error among all heat pulse methods.
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The common sources of error that contribute to this inaccuracy include insufficient

measurement ranges, probe misalignment, wounding, and sapwood traits (Forster,

2017; Looker et al., 2016).

Table 2.2: A summary of descriptive statistics derived from a meta-analysis of research
on the accuracy of heat pulse based methods against an independent measurement
of plant water use and heat velocity measurement range for each method (excerpted
from Forster (2017)).

Method n R2 Slope
Deviation

from slope (%)
Minimum

Range (cm/h)
Maximum

Range (cm/h)

All methods 104 0.822 0.860 34.706 – –

T-max 10 0.859 0.672 36.560 5-10 >200

CHPM 59 0.723 0.863 30.611 2-5 >200

HRM 11 0.916 0.833 16.949 -10 45

Sapflow+ 7 0.986 0.620 38.000 -10 >200

Dual 17 0.892 1.071 59.706 -10 >200

2.5.1 Insufficient measurement range

An insufficient or limited measurement range of vh measured by a sap flow sensor

will result in transpiration measurements over certain parts of the day or segments of

the campaign that are not accurately recorded. This has the largest implication with

trees that exhibit nocturnal (nighttime), slow, and reverse sap flow rates.

The significance of nighttime sap flow to total sap flow has been increasingly

realized (Dawson et al., 2007; Forster, 2014). Forster (2014) conducted a synthesis

of literature and unpublished data to determine the percentage of nighttime sap flow

as a proportion of total daily sap flow across seasons, biomes, phylogenetic groups,

and different thermometric sap flow methods. The analysis in the study concluded

that on average approximately 12% of daily sap flow was comprised of nightime sap

flow across all data sets. Generally, the rate of nighttime sap flow is slow (Forster,
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2014, 2017). Studies on nighttime sap flow have also evidenced that reverse sap flow,

where the flow direction is downwards along the trunk (also known as hydraulic lift or

hydraulic redistribution), commonly occurs during the nightime hours (Burgess and

Bleby, 2006; Nadezhdina et al., 2009). With regards to conifer species, Fisher et al.

(2007) observed significant nighttime sap flow coupled with small amounts of reverse

sap flow for Pinus ponderosa in the Sierra Nevada (CA, USA).

Table 2.2 shows the limited measurement range of respective heat pulse methods.

The only methods well suited to address nocturnal, slow, and reverse flow are the

HRM, Sapflow+, and dual methods. The maximum range of sap flow that can be

measured by a given method need also be considered. For example, the HRM becomes

inaccurate with high rates of sap flow. An implementation of this method would only

be accurate for tree species that do not feature high heat velocities. Of consideration

in this present study are conifer trees; however, using the HRM on this tree type would

likely not have accuracy issues due to insufficient measurement range. Swanson (1983)

stated a vh range of 0-35 cm hr-1 for conifer trees without consideration of reverse

flow.

2.5.2 Probe misalignment and tree wounding

It is common that temperature probes are not situated in perfect parallel align-

ment with the heater in the tree sapwood during sap flow installation. As shown in

Equations 2.2, 2.3, and 2.4, the calculation of vh is heavily reliant on distances between

temperature and heater probes. Errors in probe spacing, therefore, can impart large

error in sap flow measurements. Depending on the direction of the misalignment, the

error will result in either an over or under estimation of true sap flow (Forster, 2017;

Looker et al., 2016). Further, the fewer the number of probes associated with a given

method leads to a lesser chance of probe misalignment error. Slight errors in probe
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misalignment can generally be corrected. For example, Burgess et al. (2001) offered

a probe misalignment correction procedure for the HRM based on observed measure-

ments over a duration where sap flow should be zero, sometimes called a zero-flow

event. A zero-flow event can be induced by physically severing the stem above the

sap flow measurement location or can be inferred when there is no biophysical driving

force for transpiration (i.e., pre-dawn, low vapor pressure deficit, and saturated soil)

(Burgess et al., 2001; Forster, 2017; Larsen et al., 2020).

While probe misalignment is often associated with the initial installation of sap

flow probes, misalignment can also be dynamic over the course of the measurement

campaign. If sap flow sensors are left in trees for an extensive duration, it is possible

that the probe spacing will change over time due to tree growth, sapwood hetero-

geneity, or wood properties (Barrett et al., 1995). Larsen et al. (2020) proposed an

adaptation of the method developed by Burgess et al. (2001) to introduce a dynamic

probe misalignment correction for the HRM. This correction method is suited for

HRM sap flow application where sensors are left installed for longer than 3 months;

however, applicability may be limited by an insufficient number of zero-flow events

documented over the measurement campaign.

Drilling into trees to install sap flow probes results in wounding of the adjacent

vessels of the xylem. The plant responds to the wound by forming tyloses over those

vessels, consequently reducing the amount of heat reaching the sapwood from the

heater (Barrett et al., 1995). Previous work studying the effect of wounding on sap

flow estimation indicates this reduction of heat can result in an under estimation of

actual heat velocity by 50% or more (Forster, 2017; Green et al., 2003; Swanson and

Whitfield, 1981). Often wounding is corrected for using wound correction factors that

correspond with the width of the wound introduced to the instrumented tree. Many

studies rely on published tables that list correction factors for T-max, CHPM, and
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HRM (Burgess et al., 2001; Forster, 2017; Green et al., 2003; Swanson and Whitfield,

1981).

2.5.3 Sapwood traits

The conversion procedure of vh to volumetric sap flow (Q) relies on estimation

of parameters related to the tree sapwood including sapwood moisture content (mc),

sapwood basic density (ρb), and sapwood depth (Ds). Depending on whether the cho-

sen heat pulse based method requires an estimation of sapwood thermal diffusivity

(α) for its calculation of vh, values of mc and ρb are necessary to estimate α (Burgess

et al., 2001; Vandegehuchte and Steppe, 2012). All heat pulse based sap flow meth-

ods typically utilize values of mc and ρb to convert vh to sap velocity (vs) (Barrett

et al., 1995; Burgess et al., 2001; Marshall, 1958). Sapwood cross-sectional area is

typically estimated on the basis of Ds, which is needed to convert to Q. Furthermore,

because sap flow probes take measurements at a singular point in the sapwood, it is

imperative to consider the sapwood structure of the measured tree type that could

impart variation in sap flow across the sapwood radial profile. Given the heavy re-

liance on sapwood traits toward the final computation of Q, it is important to be

aware of potential uncertainties stemming from the sampling and methodology used

to determine these parameters.

Thermal diffusivity (α) as it pertains to the calculation of vh is the movement

of heat through sapwood cell walls, intercellular space, and fluids (Forster, 2017).

Many sap flow studies use a default value for α of 2.5 x 10-3 cm2 s-1 following Burgess

et al. (2001). Other studies measure and calculate α at the end of the measurement

campaign from a sapwood sample. Several methods exist for calculating α including

the approaches proposed by Burgess et al. (2001) and Vandegehuchte and Steppe

(2012); both approaches rely on the sapwood parameters mc and ρb. The work of
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Looker et al. (2016), which investigated various methods for calculating α, recom-

mended the approach of Vandegehuchte and Steppe (2012). While ρb is thought to

remain constant over time, mc has been shown to be dynamic on a daily and seasonal

basis within and between individual trees (Forster, 2017; López-Bernal et al., 2012;

Vergeynst et al., 2014). This indicates that a one time sampling of sapwood from

instrumented trees at the end of a sap flow study may not adequately capture the

variability in this parameter. The error in an estimation of α due to inaccurate mc

would also compound in the calculation of vs from vh.

Sapwood depth (Ds) is challenging to accurately measure because of heterogeneous

tree structure around the bole (Forster, 2017; Quiñonez-Piñón and Valeo, 2017). The

heterogeneity in Ds can result in inaccurate estimates of sapwood cross-sectional area,

which is typically calculated by measurements of Ds from a tree core and diameter

at breast height (DBH). It is best to sample Ds using several cores taken around

the tree circumference as to capture more variability. Looker et al. (2016) found that

conifer sapwood cross-sectional area estimated from Ds measured on a single core

could differ from a circumferential four-core average sapwood cross-sectional area by

as much as 40%.

The distribution of heartwood and sapwood in stems of lodgepole pine is not

extensively reported. Overall, cross-sectional area of the sapwood relative to the

total area of stemwood can be highly variable in different growth environments within

species (Meinzer et al., 2005). Koch (1987) examined variations in Ds for lodgepole

pine by collecting cores from three DBH tree classes (averaging 76, 152, and 228

mm) at four latitudes (37.5, 40, 42.5, and 45°) at medium elevation (relative to the

given latitude) in California and Oregon. The study observed that for all latitudes,

Ds was greatest at stump height and diminished sharply between stump height and

10% of tree height, but remained relatively constant between 10 and 50% of tree

height. Sapwood depth averaged 24, 39, and 50 mm for the 76, 152, and 228 mm
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DBH classes respectively across all latitudes at constant percentage range of total

tree height (i.e., 10 to 50%). Ds was found to be negatively correlated with latitude

on average. Overall, more sampling of heartwood and sapwood dimensions has been

done for Pinus contorta ssp. latifolia, a variant of the species found in the Rockies.

Several studies have reported allometric relationships between Ds or sapwood area

and DBH for latifolia, but Ds or area are not always proportional to the tree size for

this sub-species (Pataki et al., 2000; Quiñonez-Piñón and Valeo, 2017). In general

conifer trees such as lodgepole pine have deep functional sapwood.

Sap flow itself can vary with radial depth in trees due to sapwood structure. The

sap velocity (vs) radial profile varies between wood types (Berdanier et al., 2016;

Phillips et al., 1996). For example, conifer trees, which contain non-porous or tra-

cheid xylem, tend to show a curved vs radial profile with a peak below the cambium

and a decreasing rate with depth toward the heartwood (Berdanier et al., 2016; Ford

et al., 2004). Mark and Crews (1973) found for lodgepole pine a low flow in the vicin-

ity of the cambium, a peak flow in the region from 30 to 42 mm from the cambium,

and a tailing off of flow as the distance from the cambium increased; however, these

dimensions would differ depending on tree size. Further, conifer trees feature sap-

wood structure consisting of alternating earlywood and latewood tissue that impart

differences in hydraulic and thermal properties (Domec and Gartner, 2002). The vs

radial profile can also vary with changing environmental factors such as the variabil-

ity of soil water availability and atmospheric water demand (Dragoni et al., 2009;

Ford et al., 2004). The apparent variability in vs with radial depth advocates for

use of sap flow sensors with multiple measurement points distantly spaced along the

sapwood profile. Authors have also developed models to estimate radial patterns in

vs, which are useful when the functional sapwood extends beyond the length of the

sap flow probe (Berdanier et al., 2016; Ford et al., 2004). Besides variations in radial

depths, other studies have documented variation of vs with azimuth around the tree
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bole (Čermák et al., 2004; Tateishi et al., 2008; Tsuruta et al., 2010). Multiple sap

flow sensors are typically placed around a single tree to capture this variability in

sap flow measurement; however, this is not always feasible due to instrument power

requirements and project budget constraints.

2.6 Scaling Sap Flow to the Larger Landscape

The previous sections discussed the application of heat pulse based sap flow mea-

surements to estimate sap velocity (vs) and potential error sources. Point measure-

ments of vs are used to estimate tree level volumetric sap flow (Q). The simplest

technique to obtain tree Q is to multiply the point vs estimate by tree sapwood cross-

sectional area. Tree level Q can also be approximated by integrating point vs across

the sapwood to obtain a quantity called sapwood sap flux density (Jv) and multiply-

ing this quantity by tree sapwood cross-sectional area. Therefore, sapwood sap flux

density is able to consider radial variability in vs.

Estimates of Q traverse two more spatial levels of scale to obtain bottom-up

estimates of landscape transpiration: 1) tree to the plot/stand and 2) plot to the

landscape/catchment. This sequence necessitates accurate estimates of transpiration

for the tree species of interest, as well as an appropriate biophysical variable for

the trees distributed across the landscape to scale this flux. A number of variables

have been utilized for the latter including basal area, canopy position, and leaf area;

however, sapwood cross-sectional area is the most common. Overall, sap flow scaling

is an error prone method. Variations in transpiration among different stands could

be a major source of error for landscape-scale transpiration estimates (Ford et al.,

2004; Kume et al., 2010).

Many studies scale individual tree measurements of sap flow to the plot level using

the mean sap velocity or sapwood sap flux density of monitored trees coupled with an
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estimate of sapwood area in the plot. Plot transpiration is estimated using sapwood

sap flux density by (e.g., Granier et al., 1996; Moore et al., 2004; Wilson et al., 2001;

Wullschleger et al., 2001)

T = J̄v
As

AG

, (2.5)

where T is transpiration [L T-1], J̄v is the mean plot sapwood sap flux density [L T-1],

As is the plot sapwood cross-sectional area [L2], and AG is the plot ground area [L2].

Equation 2.5 shows plot transpiration estimated on the basis of mean plot sapwood

sap flux density, but this term could be interchanged with one representing mean

plot sap velocity. Ideal scaling from the plot scale to the landscape scale would entail

multi-plot measurements for sap velocity/sapwood sap flux density and sapwood area

within the larger landscape that follow the same plot approach (Ford et al., 2007;

Kumagai et al., 2008). The accuracy of plot and landscape scaling is contingent upon

reasonable estimates of mean plot sap velocity/sapwood sap flux density and As. Past

studies have estimated As using anywhere between 5 and 20 trees (Kume et al., 2010;

Vertessy et al., 1995; Wilson et al., 2001), while mean plot sap velocity/sapwood sap

flux density has been approximated with measurements on 15 or fewer trees (Kume

et al., 2010; Moore et al., 2004; Solum, 2020; Williams et al., 2004; Vertessy et al.,

2001). Several works have focused on potential errors in plot scale transpiration

resulting from the sample size of trees used to estimate these parameters (Kumagai

et al., 2005b; Kume et al., 2010; Oren et al., 1998b). The cumulative results of these

works suggest optimal sample sizes vary with stand environmental conditions and

forest types. Ideally measurements of sap velocity/sapwood sap flux density and As

are made in trees that represent the entire range of size distributions for a given

species in the area of interest; however, in common practice sampling is stratified by

selecting trees across a wide range of diameter classes. Stands or landscapes are likely

to include tree size classes outside of the sampled distribution.
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While the scaling approach encapsulated by Equation 2.5 uses a mean plot sap-

wood sap flux density/sap velocity from measured trees, other studies have shown

positive relationships between sapwood sap flux density/sap velocity and DBH. This

allows sapwood sap flux density/sap velocity to be estimated as a function of DBH

for non-instrumented trees. Several studies have shown a linear relationship between

these variables, but these are typically weak (Jung et al., 2011; Kume et al., 2010).

Non-linear scaling relationships have also been considered. For example, Meinzer

et al. (2005) fit sigmoidal relationships between tree sap flow and diameter and above-

ground biomass for several angiosperm and conifer species, finding stronger fits for

angiosperms. Overall, sigmoidal (or asymptotic) relationships between these variables

suggest that beyond a certain tree size there is a ‘diminishing return’ of transpiration

(Berry et al., 2017).

The assumption of how DBH relates to sap flux density/sap velocity impacts the

estimation of plot or landscape transpiration, as well as the proportional contribution

of large trees to this estimate. One notable study by Berry et al. (2017) considered

the relationship between sap velocity (vs) and DBH in the estimation of stand-level

transpiration in a tropical montane forest. The work simulated the effect of different

asymptotic values (DBH above which vs is held constant) alongside a wide range

of stand structure parameters (e.g., stem density and DBH distributions resulting in

basal area ∼ 5 - 60 m2 ha-1) on plot transpiration. The work showed an overestimation

of transpiration, attributed to the uncertainty in predicting vs in the largest trees.

Overestimation was achieved less frequently in scenarios where an asymptote was

included in the vs versus DBH relationship at a low value of DBH. Together these

results suggest the importance of adequately sampling large trees when scaling sap

flow and consideration of potential relationships between vs and DBH that are non-

linear.
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The approaches described to scale sap flow over space assume that tree transpi-

ration is spatially well mixed, but they ignore explicit consideration of environmental

variables related to transpiration that are spatially heterogeneous. Most sap flow

studies that scale to the larger landscape ignore edaphic and climatic spatial variabil-

ity despite their impact on transpiration in certain settings. For example, a number

of studies have observed decreases in sap flow with declines in soil moisture for spe-

cific tree species. Relevant to this present study, Pataki et al. (2000) observed a

relationship between sap flow and both soil moisture and vapor pressure deficit for

Pinus contorta ssp. latifolia on days without high vapor pressure deficit during a

drought growing season in the Medicine Bow Mountains (WY, USA) (Figure 2.2).

While this example deals with temporal variation in sap flow with soil moisture, sap

flow variability has been shown alongside soil moisture heterogeneity explained by

topography, soil composition, and soil depth during transitions between wet and dry

periods (Tromp-van Meerveld and McDonnell, 2006). One study by Loranty et al.

(2008) assessed the spatial autocorrelation in sapwood sap flux density and whole

tree transpiration as a function of environmental and biological drivers (e.g., soil

moisture, vapor pressure deficit, sapwood area) across a gradient from forested wet-

land to a forested upland near Peak Falls (WI, USA). In this work, sapwood sap flux

density did not exhibit spatial autocorrelation with soil moisture; however, transpi-

ration was spatially variable and attributed to spatial variability in sapwood area.

Moreover, vapor pressure deficit was shown to effect spatial patterns in transpiration

temporally. Both the upland and the wetland soil moisture conditions were deemed

non-limiting to transpiration, thus explaining the lack of spatial variance in sapwood

sap flux density in reference to this parameter.
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Figure 2.2: Daily sap flux density (Js) in relation to volumetric soil moisture content
(θ) and vapor pressure deficit (D). On the left, regression lines are given for the rela-
tionship between Js and θ during the study period (p < 0.05). Three periods during
the season are differentiated; symbol shading represents the same sample period on
the right and left. For June 16-25, θ appeared relatively constant at 0.35 m3/m3

(filled symbols). During this period a second-order polynomial was found to describe
the relationship between Js and D (p < 0.05). From June 26 to August 14 (shaded
symbols), θ rapidly decreased with small variations in D, such that no relationships
were found in all species (p < 0.05). In the remaining portion of the season (open
symbols), θ appeared to stabilize at ∼ 0.25 m3/m3, and a second order polynomial
was again fitted to Js vs. D (p < 0.05) for all species except Pinus flexilis) (excerpted
from Pataki et al. (2000)).
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2.7 Synthesis/Summary

Mountain meadows encroached by conifers, mainly lodgepole pine, are ubiquitous

in the Sierra Nevada and Cascade Range. This degradation pathway detracts from the

wide array of ecosystem services that meadows provide that relate to their hydrologic

regime and native vegetation communities. More knowledge is needed surrounding

the water balance of these systems in their degraded state in order to comprehend the

potential effects of restoration techniques such as tree removal. One large component

on the meadow water balance is evapotranspiration (ET); however, this has only

been studied and quantified to a limited extent in meadow environments, let alone

meadows encroached by conifers.

Evapotranspiration (ET) is comprised of two sub-processes, evaporation and tran-

spiration. Transpiration would be anticipated to dominate in in a meadow environ-

ment encroached by conifers given prior studies of ET in conifer forest ecosystems.

Like any ecosystem, meadow ET is controlled by interacting climatic, edpahic, and

biotic (vegetative) factors. Most of the existing knowledge base surrounds wet mead-

ows, which shows herbaceous vegetation species with high transpiration rates during

the growing season when the meadow is not a water limited environment and cli-

mate/energy availability is conducive to this process. The edaphic factors governing

transpiration in the late growing season are less clear, as the saturated zone may be

located below the root zone. Transpiration will then be governed by vadose zone pro-

cesses and the volume of water accessible here. Importantly, it is not clear whether

or not conifer trees use water over the course of the growing season following patterns

indicative of a non-water limited environment, such as what has been observed for

wet meadows. Woody vegetation generally have deeper roots than herbaceous plants;

however, the water availability may constrain conifers from reaching a maximum rate

provided there is high atmospheric demand for water. A study by Loheide II and
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Gorelick (2005) showed higher ET in a restored historical wet meadow compared to

its degraded, dry state with woody vegetation, but the invasive woody vegetation

were not conifers.

Past studies have quantified meadow ET using models, eddy flux stations, and

water balances. There is no common approach to quantifying meadow ET or to

our knowledge a method that has been employed to directly measure and quantify

conifer transpiration in degraded meadows. Heat pulse based sap flow methods pro-

vide a relatively simple means to measure whole tree water use. All these methods

calculate heat velocity (vh), which is converted to sap velocity (vs) and multiplied by

the sapwood area to calculate volumetric sap flow (Q). Sap velocity can also be inte-

grated/averaged across tree sapwood to match a radial profile of sap flow. Heat pulse

based methods, however, are imperfect and suffer from several error sources. The

heat ratio method (HRM) is able to mitigate many of these errors. It is well suited

to measure conifer sap flow given its range of measurements, calibration flexibility to

probe misalignment and tree wounding, and ability to measure radial variability in

sap flow. This is the sap flow method used in this present study.

Sap flow measurements made in a small number of trees are typically scaled to

the larger landscape using sapwood area as a scaling parameter. Many studies use

an average value of sap velocity/sapwood sap flux density taken from measurements

in instrumented trees; however, positive relationships have also been shown between

these measurements and tree size variables (e.g., DBH) that can help scale sap flow.

Any study scaling sap flow with these relatively simple approaches should carefully

evaluate how vs and sapwood area are sampled in the area of interest. Most sap

flow scaling approaches ignore the heterogeneity of factors such as soil moisture and

local climate, despite knowledge that these variables vary spatially and temporally

with transpiration. Not every environmental setting, however, will present conditions

that impart significant variability in sap flow over space. Given the potentially small
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and non-representative sample of trees used to scale sap flow for the area of interest,

it is good practice to compare scaled transpiration to ET approximated by another

method.

Sap flow measurements executed with careful consideration of potential errors of-

fer a means to estimate water consumption by lodgepole pine in a mountain meadow.

Currently, only a few studies have estimated meadow ET in this degraded state (Fie,

2018; Sanford, 2016; Surfleet et al., 2019, 2020; Van Oosbree, 2015). The transpira-

tion estimates produced by this present work will support efforts of evaluating the

hydrologic response of a meadow degraded by conifer encroachment to tree removal

restoration. The work will also apply sap flow to conifer encroached meadow for the

first time and contribute to the limited knowledge base regarding meadow ET overall.
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CHAPTER 3: STUDY SITE

3.1 Site Overview

The study reported in this work was conducted at Rock Creek Meadow (RCM),

40.329°, -121.088°. RCM is located near the city of Chester, California, USA in the

southern Cascade Range (Figure 3.1). The site is accessed through an unpaved road

off the highway and is part of the 94,000-ac Collins Almanor Forest owned by the

Collins Pine Company (Chester). RCM occupies approximately 75 ha (185.3 ac)

and intersects the 1524 m (5000 ft) elevation contour (Figure 3.1a). The meadow

underwent restoration by removal of lodgepole pine beginning in August 2020. The

majority of the lodgepole pine was removed from RCM during fall 2020, including

around the measurement locations used in this study. A small portion of the RCM

conifer removal, not in the primary study area, was completed during summer 2021.

RCM is largely a dry meadow based on its observed hydrology and vegetation

according to the classification system devised by Weixelman et al. (2011), although

mesic (wetter) meadow conditions exist along Rock Creek’s riparian corridor and in

openings near the stream. Dry meadows occur where the main source of water is

precipitation or runoff with groundwater generally deeper than 1 m for most or all

of the growing season. Vegetation for dry meadows is typically comprised of grasses,

dryland sedges, and dryland rushes (Weixelman et al., 2011). The following sections

describe in greater detail the climate, vegetation, hydrology, geology, and soils for the

meadow.
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3.2 Climate

As part of the southern Cascade Range, RCM experiences a climate characterized

by wet, cool winters and dry, warm summers, with large daily temperature differences.

The latest seasonal normals (three-decade averages, 1981-2010) calculated from data

collected by the National Oceanic and Atmospheric Administration (NOAA) climate

station (station ID USC00041700) at Chester, CA are presented in Table 3.1. The

normals indicate mean summer air temperature highs of 27.4 °C and mean winter

lows of -5.9 °C. Winters (DJF) for this time period experienced on average 437 mm

of precipitation (includes snow water equivalent), while summers (JJA) average 32.5

mm. Monthly normals indicate the rain and snow season occurs between October and

May, with average precipitation greater than 44 mm in each of these months. Average

yearly precipitation summed from the monthly normals is 872.5 mm. It should be

noted that the elevation of the Chester NOAA station is 1381 m above mean sea

level (amsl) compared to the 1524 m amsl elevation of RCM. Temperatures are likely

cooler and precipitation greater during the wet season at RCM compared to Chester.

3.3 Vegetation

Plant surveys were completed at RCM along the Rock Creek riparian corridor

and adjacent meadow openings as part of a timber harvest plan in July of 2017

by Collins Pine Company. The survey reported a variety of trees, shrubs, forbs,

and graminoids including lodgepole pine (Pinus contorta ssp. murrayana), prostrate

ceanothus (Ceanothus prostratus), Western mountain aster (Symphyotrichum spathu-

latum), and Kentucky bluegrass (Poa pratensis) (Appendix Table A.1). Lodgepole

pine and other conifer species were most dense on the west side of the main access

road prior to restoration, closest to Rock Creek watercourse, compared to the meadow
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Table 3.1: Monthly climate normals (1981-2010) from data collected at the Chester,
CA NOAA Station (ID USC00041700).

Month
Avg. Max Temp.

(°C)
Avg. Min Temp.

(°C)
Avg. Temp.

(°C)
Avg. Precip.

(mm)
Avg. Snowfall

(mm)

Jan. 4.9 -6.4 -0.7 151.38 881.4

Feb. 7.0 -5.7 0.7 135.13 708.7

Mar. 10.3 -3.3 3.5 122.68 497.8

Apr. 13.9 -1.3 6.3 63.25 124.5

May 19.2 2.2 10.7 44.20 7.6

Jun. 24.2 5.6 14.9 19.05 2.5

Jul. 29.2 8.4 18.8 7.37 0.0

Aug. 28.8 7.2 18.0 6.10 0.0

Sep. 25.2 4.2 14.7 16.00 2.5

Oct. 18.6 0.4 9.5 51.82 17.8

Nov. 9.6 -3.2 3.2 104.90 322.6

Dec. 4.8 -5.8 -0.4 150.62 635.0

area east of the road (Figure 3.1a). Average basal area was estimated as 22.34 and

29.54 m2/ha for the eastern and western meadow portions respectively from a tree

survey performed before restoration. The meadow edge consists of mixed conifer for-

est including lodgepole pine, white fir (Albies concolor), Jeffrey pine (Pinus jeffreyi),

and sugar pine (Pinus lambertiana).

3.3.1 Surface Hydrology

RCM is located in the northern portion of the Upper Feather River Watershed

(UFRW) feeding the North Fork Feather River. The UFRW is a 8288 km2 basin and

includes all waters tributary to the Feather River from the headwaters downstream to

Lake Oroville. At a larger scale, RCM belongs to a 7992 ha sub-watershed, 12-digit

hydrologic unit (HUC-12) as delineated by the United States Geologic Survey (Figure
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3.1b). Rock Creek is the main watercourse in this sub-watershed with a length of 18.5

km that forms a confluence with the Hamilton Branch discharging to Lake Almanor.

The local surface hydrology of RCM includes one intermittent stream in Rock

Creek and several ephemeral streams that flow during high runoff events (Figure 3.1a).

Rock Creek typically begins flow at the start of the annual snow melt (typically March

or April) with flow supplemented by precipitation events during the flow season.

Flows continue until snow has completely melted and similar streams have stopped

flow upstream, gradually approaching no streamflow generally in either late summer or

early fall. Streamflow data collected by the Plumas Corporation (Quincy, CA, USA)

at a stream gauge in the southern portion of RCM showed peak hourly average flow

rates in 2017, 2018, and 2019 of 1.4, 0.7, and 6.4 m3/s respectively. The disparity in

peak flows between these three years show Rock Creek’s heavy reliance on the amount

of snow pack in any given year.

3.4 Geology and Soils

RCM is located in the Cascade Range and Modoc Plateau geomorphic provinces.

Just to the south, is the Sierra Nevada geomorphic province. The intersection of these

three provinces is thought to create the fault zone beneath nearby Mount Lassen, the

southernmost active volcano in the Cascades located approximately 70 km southeast

from RCM. The lithology and structural continuities of the Cascade Range and

Modoc Plateau are similar, with the Modoc Plateau comprised of an ancient basalt

floodplain that extends southwest from Oregon and the Cascades associated with

pyroclastic rock material connected to Mount Lassen (Macdonald and Gay, 1966).

RCM sits a few miles east from the Almanor Fault Zone and west of the Walker

Spring Fault Zone which comprise a series of normal to sinistral-normal faults which

are known to offset Pliocene-age basalt bedrock (Bryant, 2000). In line with the
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regional geology, the geologic material for RCM is mapped as Pleistocene or Pliocene

volcanic basalt rock. Both balsaltic and rhyolitic rock, however, have been observed

at the meadow site.

Two soil map units comprise RCM (Soil Survey Staff, 2020). The meadow area

adjacent to Rock Creek and to the west of the main access road as the meadow widens

is mapped as Mountmed loam, 0 to 2 percent slopes. The meadow area east of the

main access road including the specific site for sap flow measurements is mapped as

Inville very gravelly sandy loam, 0 to 5 percent slopes. Given the site geology, the soil

parent materials are volcanic and alluvial material of mixed rock types. Mountmed

loam is described as poorly drained with a shallow water table existing between 0

and 0.45 m of the soil surface. A typical profile of this soil series consists of a loam

surface to a depth of 0.15 m, clay to a depth of 0.76 m, and stratified sand to very

gravelly sandy clay loam to a depth of 1.5 m (Bochard, 2004). Inville very gravelly

loam is described as well drained with a water table 2 m or below the soil surface.

A typical profile of this soil series consists of a very gravelly sandy loam surface to a

depth of 0.25 m, very cobbly loam to a depth of 0.53 m, extremely gravelly loam to

a depth of 0.76 m, and very gravelly loam to a depth of 1.5 m (Bochard, 2004). Soil

samples collected from the meadow coinciding with the Mountmed loam map unit at

depths of less than 20 cm and greater than 20 cm returned textural classes (US Soil

Taxonomy) of loam (31% sand, 44% silt, clay 25%) and silty clay loam (18% sand,

53% silt, 29% clay) respectively from a particle size distribution analysis. Soil samples

collected from the meadow coinciding with the Inville very gravelly sandy loam map

unit at the same two sampling depths returned textural classes of sandy loam (50 %

sand, 37% silt, 13% clay) and loam (48% sand, 45% silt, 6% clay) respectively.
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CHAPTER 4: METHODOLOGY

In order to accomplish the objectives of the present study, both field and modeling

methods were adopted. The field methods include (1) measurement of lodgepole pine

(Pinus contorta ssp. murrayana) sap flow, (2) measurement of meadow hydromete-

orological conditions, and (3) a tree survey focused on lodgepole pine. The sap flow

and hydrometeorological measurements served as calibration, input, and validation

data for a modified Jarvis-Stewart (MJS) model linking lodgepole pine sap flow with

environmental variables.

The sap flow and tree survey data were used to estimate lodgepole pine transpira-

tion for RCM on a per plot basis in a simple scaling approach. This upscaling spanned

an approximate 1-year period from mid-July 2019 to mid-August 2020, overlapping

partially with two growing seasons (April through August annually). The simple

scaling in the 2020 partial growing season was compared to a separate per plot basis

extrapolation informed by the calibrated model in select plots. Lastly, transpiration

estimates from the simple scaling were compared to a moderate resolution imaging

spectroradiometer (MODIS) evapotranspiration (ET) estimate for RCM. The follow-

ing sections detail the sap flow theoretical foundation, field data collection, sap flow

modeling, extrapolation approaches, and MODIS ET estimation.

4.1 Sap Flow Theoretical Basis

Sap flow was measured in lodgepole pine using three-probe configuration heat

pulse velocity sensors (East 30 Sensors, Pullman, WA, USA). The sensor follows the

design described in Burgess et al. (2001). Each sensor consisted of three 35 mm

long stainless-steel needles spaced 6 mm apart. The middle needle consisted of an
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Evanohm heater (Carpenter Technology Corp., Philadelphia, PA, USA). Both the

downstream and upstream needles featured three 10K precision thermistor sensors

positioned at distances of 5 mm, 17.5 mm, and 30 mm respectively from the probe

shroud (Figure 4.1). The heater delivered a heat pulse to the tree sapwood for 8

seconds and temperature was measured at each downstream and upstream thermistor

52 seconds after heat pulse deliverance. Therefore, measurements were recorded 60

seconds after the heat pulse was released, consistent with the recommendation for

measurement time made by Burgess et al. (2001).

(a) (b)

Figure 4.1: (a) Schematic of the three-probe heat pulse velocity sap flow sensor
manufactured by East 30 Sensors including probe and thermistor spacing dimensions.
(b) Sap flow sensor manufactured by East 30 Sensors, Pullman, WA, USA.

We used the heat ratio method (HRM) proposed by Burgess et al. (2001) to

determine heat velocity (vh) [L T-1]. Heat velocity is calculated using the measured

ratio of the increase in temperature, following the release of a pulse of heat, at points

equidistant downstream and upstream from a line heater. The calculation follows an

empirical equation proposed initially by Marshall (1958) and formally for the HRM

by Burgess et al. (2001):

vh =
α

x
ln

(
∆Td

∆Tu

)
, (4.1)
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where vh is the heat velocity (cm s-1), α is the thermal diffusivity of green (fresh)

sapwood (cm s-1), x is the distance between the heater and either temperature probe

(0.6 cm), and ∆Td and ∆Tu are changes in temperature (60 s following heat pulse

release) at equidistant points downstream and upstream respectively. Heat velocity

was converted to units of cm h-1 by multiplying the result of Equation 4.1 by 3600.

The accuracy of the vh calculation was improved by calculating thermal diffusivity for

lodgepole pine sapwood at RCM and correcting measurements for probe misalignment

and tree wounding (see Section 4.3). Corrected heat velocity (vc) is then converted

to sap velocity (vs) [L T-1].

Corrected heat velocity was converted to vs using the equation proposed by Mar-

shall (1958):

vs =
ρb
ρs

(
mc +

cdw
cs

)
vc, (4.2)

where vs is sap velocity (cm h-1), ρb is the basic density of sapwood (g cm-3), ρs

is the density of sap, assumed equal to water (1.0 g cm-3), mc is water content of

sapwood, cs is the specific heat capacity of sap, assumed equal to water (4.186 J g-1

K-1), cdw is the specific heat capacity of oven-dry sapwood (J g-1 K-1), and cdw/cs

is the normalized specific heat capacity of dry sapwood (dimensionless). Normalized

specific heat capacity of dry sapwood was assumed constant at 0.33 (=1.380 J g-1

K-1/4.186 J g-1 K-1) by Edwards and Warwick (1984), but has also been shown to

be a function of temperature by Dunlap (1912). We used the equation from Dunlap

(1912) to estimate cdw/cs, which has also been used in more recent works (e.g., Steppe

et al., 2010; Swanson and Whitfield, 1981):

cdw
cs

= 0.266 + 0.00116T, (4.3)

where T is temperature (°C).
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Sap velocity measurements were used to estimate volumetric sap flow (Q) [L3

T-1] for instrumented trees by integrating vs across the conducting sapwood. The

assumptions and calculation of this quantity are described in more detail in Section

4.7.

4.2 Sap Flow System Installation

Sap flow probes were deployed twice within RCM over the course of the study

(Figure 4.2). The probes were first installed in a 25 m x 25 m plot in eastern RCM,

hereafter referred to as the sap flow plot (SFP). The measurements collected in the

plot are the primary sap flow data for this work and are used for model calibration

and estimation of lodgepole pine transpiration for the larger meadow. The probes in

the SFP were removed from their respective trees in August 2020, corresponding with

the beginning of RCM’s restoration. The probes were re-installed in western RCM,

with the purpose of providing spatially and temporally different validation data for

the calibrated model. Table 4.1 provides the data collection periods for both sap flow

system deployments.

Table 4.1: Data collection periods for the two sap flow system deployments at RCM.

Deployment Start Date-Time (GMT-7) End Date-Time (GMT-7)

Sap Flow Plot (SFP) 2019-07-20 15:30:00 2020-08-17 07:30:00
Model Validation 2021-05-01 15:00:00 2021-07-06 11:00:00

Eight lodgepole pine were selected for instrumentation within the SFP based on

their diameter at breast height (DBH) (10 cm - 40 cm) and proximity to the data

logger. One probe was inserted into each tree. The location of individual trees within

the plot are shown in Figure 4.2. The same tree selection criteria was applied during

the second sap flow deployment; however, only six trees were instrumented.
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Figure 4.2: The RCM instrumented study area including the sap flow plot (SFP) and
model validation site. The main map shows the location of soil moisture instruments,
wells, climate station, and tree survey plots. The SFP map, displayed at a larger
scale, shows the locations and IDs for the eight instrumented lodgepole pine.
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The installation procedure for the sensors began by scraping off the tree’s outer

bark to its cambium from a 5 cm x 7.5 cm area with a putty knife. This ensured the

the sensor could be installed completely flush and the shallowest thermistor would

be located in sapwood. A number 55 (1.32 mm) drill bit and drilling guide was used

to drill holes into the tree with 6 mm vertical needle spacing and 35 mm needle

depth. Grafting wax was then applied to the sensor needles to ease insertion into

the drilled holes. After ensuring the holes were clear from drilling debris, the needles

were aligned with the holes and slowly inserted into the tree until flush (Figure 4.3a).

Insulation was then placed around the sensor and tree to protect from any incoming

solar radiation (Figure 4.3b).

(a) (b)

Figure 4.3: (a) Heat pulse velocity sap flow sensor inserted flush into a lodgepole
pine tree. (b) Two sap flow instrumented lodgepole pine in the SFP wrapped with
reflective insulation.

The heat pulse and temperature differential measurement sequence with the HRM

sensors was repeated every 30 minutes using a CR1000 Measurement and Control

Datalogger (Campbell Scientific, Logan, UT, USA) and a AM16/32 relay multiplexer
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(Campbell). Both pieces of hardware were housed inside a weather-resistant enclosure

and powered using a 12V, 12Ah sealed rechargeable lead-acid battery, solar panel,

and 12V charging regulator (Figure 4.4a). The enclosure was mounted to a 1.6 m

tall homemade stand, stabilized by counter-balancing galvanized wire tie-downs to

protect it further from inclement weather and wildlife (Figure 4.4b). Sensor cables

were encased in irrigation tubing and buried underground to protect against rodent

damage. LoggerNet Software (Campbell) was used to communicate between the data

logger and a Windows PC.

(a) (b)

Figure 4.4: (a) CR1000 datalogger and AM16/32 relay multiplexer housed inside
weather resistant enclosure. (b) Home constructed stand used to protect sap flow
system enclosure located near LP1 in the SFP.

4.3 Heat Velocity Data Processing

Heat pulse velocity calculations by the HRM were refined by implementing the

three major correction measures recommended by Burgess et al. (2001). These three
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correction measures, outlined procedurally in the subsections below, included calcula-

tion of lodgepole pine sapwood thermal diffusivity, correction for probe misalignment,

and correction for tree wounding. The corrections were applied to the data in the

order presented. Following these procedures, corrected heat pulse velocity data were

evaluated for quality.

4.3.1 Thermal diffusivity calculation

Thermal diffusivity (α) was calculated for lodgepole pine at RCM using the

methodology proposed by Vandegehuchte and Steppe (2012). To implement the calcu-

lation for α, fresh mass, oven-dry mass, and fresh volume of sapwood were determined

for a sample of lodgepole pine. A sapwood core was removed from the eight instru-

mented trees in the SFP at the end of the measurement campaign in August 2020

using a increment borer (Haglöf, Sweden). Cores were also taken from the six instru-

mented trees at the model validation site and two non-instrumented trees nearby in

May 2021, as to match the sample size from the SFP. Fresh volume was calculated

for each core using the equation for volume of a cylinder. The fresh sample was

weighed, placed in an oven at 80 °C for 72 hours, and weighed again to gather the

fresh and oven-dry masses. Density of the fresh sapwood, density of the dry sapwood,

and water mass were calculated from these measurements.

Thermal diffusivity (α) (m2 s-1) was calculated using an equation from Bouguerra

et al. (2001):

α =
k

ρc
, (4.4)

where k is the thermal conductivity of the sapwood (W m-1 K-1), ρ is the density of

fresh sapwood (kg m-3), and c is the specific heat capacity of the fresh sapwood (J

kg-1 K-1). Specific heat capacity of the sapwood describes its ability to store heat and
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was calculated for each sample using Equation 4.5 from Burgess et al. (2001):

c = ŵdcd + (1− ŵd)cw, (4.5)

where ŵd is the ratio of oven-dry mass and fresh mass of the sapwood sample and

cd and cw are the specific heat capacity of dry sapwood (1200 J kg-1 K-1) and water

at 20 °C (4186 J kg-1 K-1), respectively (Edwards and Warwick, 1984). Thermal

conductivity was calculated by Equation 4.6 from Vandegehuchte and Steppe (2012):

k = kw(mc −mcFSP )
ρb
ρw

+ 0.04186(21.0− 20.0FvFSP ), (4.6)

where kw is the thermal conductivity of water at 20 °C (0.5984 W m-1 K-1), mc is the

moisture content of the sapwood (water mass divided by dry sapwood mass), mcFSP

is the fibre saturation point (dimensionless), ρb and ρw are the density of dry sapwood

and water (kg m-3), and FvFSP is the void fraction of the sapwood at fibre saturation

point (dimensionless). Fibre saturation point values were calculated according to

Roderick and Berry (2001) using Equation 4.7:

mcFSP = 0.2
√
ρb/ρw. (4.7)

Void fraction at fibre saturation is calculated by

FvFSP = 1−G

(
ρw
ρcw

+mcFSP

)
, (4.8)

with G being the specific gravity of sapwood (dry mass per fresh volume divided by

the density of water) and ρcw the cell wall density of sapwood (1530 kg m-3). The

derivations of Equation 4.4 through 4.8 are explained in more detail by Bouguerra
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et al. (2001), Burgess et al. (2001), Roderick and Berry (2001), and Vandegehuchte

and Steppe (2012).

We used the average α determined from the 16 total cores in the vc calculation

for each tree. Average α was determined as 2.44 x 10-3 ± 2.3 x 10-4 cm2 s-1. The

procedure of Vandegehuchte and Steppe (2012) also informed the values of mc and ρb

needed to convert vc to vs in Equation 4.2. A constant value of 1.00 ± 0.26 was used

for mc, while a constant value of 0.534 ± 0.109 g cm-3 was used for ρb.

4.3.2 Probe misalignment correction

We implemented a zero flow approach to correct for probe misalignment following

Burgess et al. (2001). The approach assumes that vh = 0 cm hr-1 when there is no bio-

physical force driving transpiration. Assuming perfect symmetry of the downstream

and upstream thermistors and vh = 0 cm hr-1, probe placement can be calculated as:

x2 =

√
4αt ln

(
∆Td

∆Tu

)
+ x2

1, (4.9)

where x1 and x2 are the downstream and upstream probe spacing relative to the

central heater respectively (the negative direction is upstream, cm), α is thermal

diffusivity of the sapwood (cm2 s-1), and t is the time after the heat pulse at which

the downstream and upstream temperature are measured (60 s). Equation 4.9 was

solved using downstream and upstream temperature (∆Td and ∆Tu) data collected

during zero-flow events that occurred during the measurement campaign. Zero-flow

events were flagged when it was pre-dawn, soil moisture was close to saturation, and

the vapor pressure deficit was close to zero. Equation 4.9 was solved twice for each

zero-flow event, first assuming x1 was properly spaced at 0.6 cm when solving for x2

and vice versa (x2 = -0.6 cm). This was done for each thermistor pair at the three

radial depths. The probe alignment calculations were averaged for each event and
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then the median value for all averages across events was taken as the final estimated

misalignment.

Equation 4.10 from Marshall (1958) was used to correct heat pulse velocity mea-

surements using the estimated misalignment values:

vc,1 =
4αt ∗ ln

(
∆Td

∆Tu

)
− (−0.6)2 + x2

1

2t(x1 + 0.6)

vc,2 =
4αt ∗ ln

(
∆Td

∆Tu

)
− x2

2 + 0.62

2t(0.6− x2)
.

(4.10)

The two corrected heat velocity solutions obtained from Equation 4.10 were averaged

to avoid biasing the misalignment correction in either the upstream or downstream

direction. Two instrumented trees between the SFP and model validation sites had

severe probe misalignment at the 17.5 mm and 30 mm measurement depths. These

data were abandoned in favor of the 5 mm depth data because of the uncertainty

associated with correcting badly misaligned probes (Burgess et al., 2001).

4.3.3 Tree wound correction

To correct for tree wounding we use the published correction factors and equation

from Burgess et al. (2001). Wounding is corrected for by:

vc = bvh + cv2h + dv3h, (4.11)

where b, c, and d are coefficients for numerical solutions derived for a range of wound

diameters corresponding to the -0.6, 0, and 0.6 cm probe configuration, where probes

are 1.3 mm in diameter. Wounding corrections were only applied to the vh data col-

lected in the SFP because the data were used directly for lodgepole pine transpiration

estimation. The wounding correction was unnecessary for the data collected in the
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second deployment because the correction is a linear factor and is thus removed by

the data normalization we applied in our modeling approach (see Section 4.6.1).

Wounding diameter ideally would be measured periodically throughout the mea-

surement campaign to contend with the tree’s dynamic response to wounding; how-

ever, this was not done to avoid destruction to tree xylem. Instead, wound diameters

were measured for SFP trees following probe removal in August 2020. The average

wound diameter was 2.4 ± 0.3 mm for the eight trees.

There was evidence in our SFP vh data that the wound diameters were not as

extreme as 2.4 mm for the entire measurement campaign. When the correction co-

efficients corresponding with 2.4 mm wounds were applied to vh data early in mea-

surement period (July - October 2019), vh commonly exceeded the 35 cm/hr in all

monitored trees. The exceedance of 35 cm/hr was suspicious because Swanson (1983)

stated an upper vh threshold of 35 cm/hr for conifer trees. Accordingly, we assumed

a smaller wound diameter of 1.9 mm for SFP trees between probe installation in July

2019 and April 1, 2020. This was assumed based on anatomical investigations by

Barrett et al. (1995) for trees with closely spaced xylem vessels similar in physiology

to conifers; their study reported the total wound diameter likely extends 0.3 mm on

either side of the drill hole for a given probe. The measured 2.4 mm wound diameter

was assumed for all instrumented SFP trees from April, 1 2020 to August 17, 2020.

4.3.4 Missing data and quality control

We use the 30-minute SFP vc data collected between July 21, 2019 and August

16, 2020, so the start and end of the SFP campaign would reflect complete days.

The data logger exceeded memory capacity and wrapped over data from December

10, 2019 through January 10, 2020, so data is missing for this period. Our SFP

measurements, therefore, cover 362 full days.
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The HRM only measures −10 < vc < 45 cm h-1, as this is the range within

which the ∆Td/∆Tu ratio can be assumed accurate in Equation 4.1 (Barrett et al.,

1995; Burgess et al., 2001; Forster, 2017). The majority of recorded negative heat

velocities within this valid range were between -5 and 0 cm h-1 (96% of all negative

vh′ measurements). Furthermore, the number of negative values between -10 and -5

cm h-1 were disproportionately produced by the the probes in LP5 and LP6 (47% of

vc values recorded in this range). This observation is likely attributable to the more

severe probe misalignment in LP5 and LP6 compared to the other trees. The data

from these two trees also had more noise.

The combination of the low number of vc observations < -5 cm h-1 and a dispro-

portionate number of these measurements coming from two trees suggest the values

in this range are uncharacteristic of the true reverse flow. Accordingly, we decided

to remove all vc < -5 cm h-1 and vc > 45 cm h-1. For the non-missing data collected

across the eight SFP trees, a total of 5413 vc observations were removed, 1.4% of the

total available data. Missing values were linearly interpolated, as they sporadically

occurred throughout the data set.

4.4 Other Environmental Data

We monitored soil moisture, groundwater, and climate data at RCM. This data

collection is ongoing and part of the pre and post-restoration hydrologic quantification

of the meadow. Because the present study is focused on lodgepole pine transpiration,

we discuss this environmental data as it corresponds with our sap flow measurements.

4.4.1 Soil moisture monitoring

Soil moisture was monitored at seven locations in RCM, overlapping fully or in

part temporally with the sap flow measurements depending on instrument installa-
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tion timing and occasional instrument failure (Figure 4.2 and 4.5). Measurement

set-up RCSM2 is located within the SFP, while RCSM2b is located just outside the

plot (Figure 4.2). Soil moisture sensors were also installed in the vicinity of the six

lodgepole pine trees part of the model validation site (RCSM6). All locations mea-

sured volumetric soil water content (θv) (dimensionless) by time domain reflectometry

(TDR) with data logged every 30 minutes. Data from RCSM1, RCSM2b, RCSM3,

and RCSM5 were only used for this study in the context of SFP data, hence the pre-

sented timeline for these set-ups do not reflect measurements collected after August

17, 2020 (Figure 4.5a). Data from RCSM6 had full temporal overlap the with sap flow

measurements from the model validation site beginning in May 2021 (Figure 4.5b).

Moisture content values at the soil moisture set-ups were computed from measured

dielectric (relative) permittivity using the Topp et al. (1980) equation. Topp et al.

(1980) used sandy loam, two clay loams, and clay soil textural classes to determine

the dependence of the dielectric constant on θv empirically. The textural classes of

the soils at RCM are similar to those used in Topp et al. (1980), so no site-specific

TDR calibration was performed. We did, however, perform a calibration-check in

July 2020 using soil samples collected at 30 cm depth in the vicinity of soil moisture

set-ups RCSM1, RCSM2b, and RCSM5. Volumetric soil water content calculated

from the samples showed agreement with shallow soil depth TDR θv measurements

for their respective soil moisture set-up.

Two sampling locations, RCSM1 and RCSM5, measured θv using 10HS Soil Mois-

ture Smart Sensors (Decagon Devices, Pullman, WA, USA), installed at depths of

10, 30, and 100 cm. Data at these locations was collected using a HOBO USB Micro

Station Data Logger (Onset Computer Corporation, Cape Cod, MA, USA). RCSM6

measured θv with the same sensor and logger, but only at 30 and 60 cm depths.

Data at RCSM2 and RCSM3 was measured using a SoilVUE10 TDR Soil Moisture

and Temperature Profile Sensor (Campbell Scientific, Logan, UT, USA), with nine
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Sap Flow Plot
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Instrument Manufacturer East 30 Sensors Campbell Scientific Decagon Devices

Figure 4.5: RCM soil moisture instrument measurement timeline in the context of sap
flow deployments (a) SFP and (b) model validation site. The start of bars represent
set-up installation and gaps reflect missing data.

58



sensors along a 1 m profile. Data were logged at RCSM2 and RCSM3 by CR1000

and CR300 Measurement and Control Dataloggers (Campbell) respectively. Two

CS650 Soil Moisture and Temperature Sensors (Campbell) were used at the remain-

ing sample location, RCSM2b, installed at a 40-50 cm depth with logging by a CR800

Measurement and Control Datalogger (Campbell).

The θv data given by the SoilVUE10 for RCSM2 gave unusually low measure-

ments that departed heavily from what was observed in close proximity by RCSM2b.

We believe the values were low at RCSM2 because of poor contact between the in-

strument’s TDR sensors and soil due to high gravel content. We abandoned the

measurements given by RCSM2 in favor of those given by RCSM2b for this study.

These measurements appeared more accurate of true soil moisture conditions for the

SFP and overlapped the entire SFP measurement campaign. The calibration-check

performed in July 2020 using soil samples near RCSM2b showed good agreement with

the TDR derived θv data logged by RCSM2b.

4.4.2 Groundwater monitoring

Groundwater depth (GWD) was monitored in RCM using six groundwater wells

(Figure 4.2). Four of the wells (RCW1, RCW2, RW3, and RCW6) were installed

by Cal Poly, while the remaining wells (RCW3P and RCW4P) were installed by

Plumas Corporation (Quincy, CA, USA), a non-profit involved in RCM’s restoration.

One well location, RCW2, is located in the SFP. GWD measurements throughout the

meadow overlaps fully or in part temporally with sap flow measurements from the the

SFP depending on when well instruments were deployed and occasional instrument

failure (Figure 4.6). We were not concerned with GWD data collected during the

period of the model validation. Cal Poly wells were installed between July 10, 2018

and September 3, 2019, while Plumas Corporation wells were installed in July 2017.
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All well instruments measured water pressure at either a 15 or 30 minute interval,

which was then converted to water depth and subsequently to GWD, the depth in

the soil to water from the ground surface. Table 4.2 documents the dimensions for

each well.

Sap Flow Plot

RCW1

RCW2

RCW3

RCW6

RCW3P

RCW4P

2018 May 2018 Sep 2019 Jan 2019 May 2019 Sep 2020 Jan 2020 May 2020 Sep

Instrument Manufacturer East 30 Sensors Onset Dwyer In−Situ

Figure 4.6: RCM groundwater well instrument timeline. Well instruments are shown
on the y-axis, as well as sap flow (bottom red bar), which is included to compare the
well measurement timeline to the SFP campaign. The start of a given bar represents
when that instrument began sending data to its respective logger, with the exception
of wells RCW3P and RCW4P, that began recording in summer of 2017.

Initially water pressure in wells RCW1 and RCW3 was measured by a Series

SBLT2 Submersible Level Transmitter (Dwyer, Michigan City, IN, USA), with data

logged by a EL-USB-3 Voltage Data Logger (Lascar Electronics, Erie, PA, USA).

Pressure data collected by the vented pressure transducers in these wells was con-

verted to GWD using known well depths and riser heights. The instrumentation

in these wells were replaced by U20L-04 Water Level Data Loggers (Onset) during

the study period due to instrument failure (Figure 4.6). These instruments were not
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Table 4.2: RCM well ID codes and depths. Wells with their ID ending with “P” were
installed and maintained by Plumas Corporation for the study, while all others were
installed and maintained by Cal Poly.

Well ID Depth (m)

RCW1 2.90
RCW2 1.41
RCW3 2.63
RCW6 2.90
RCW3P 1.86
RCW4P 2.16

vented, requiring adjustment of the measured water pressure by atmospheric pres-

sure. Atmospheric pressure was measured and logged by a U20L-02 Water Level

Data Logger (Onset), mounted on the climate station in RCM. Well pressure data,

once calibrated, was then converted to GWD using the relationship between water

pressure and known well depths and riser heights. Water pressure in wells RCW2

and RCW6 was measured and recorded by a U20L-04 Water Level Data Logger for

the entire study period. The wells maintained by Plumas Corporation measured wa-

ter pressure with Level TROLL 500 vented pressure transducers (In-Situ Inc., Fort

Collins, CO, USA).

4.4.3 Climate monitoring

A climate station (Onset) was installed in the SFP on September 4, 2019 (Figure

4.2). The station was equipped with sensors for air temperature, relative humid-

ity, wind speed, wind direction, barometric pressure, and incoming and outgoing

shortwave solar radiation. Measurements from all instruments were recorded at a 30

minute interval by a HOBO U30 USB Weather Station Data Logger (Onset). Data

time-stamped prior to the installation of the climate station at RCM was taken from

an identical climate station found at another research meadow (Control Meadow),
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located approximately 30 km west of RCM at a similar elevation (1463 m) (Surfleet

et al., 2019, 2020). Daily precipitation data were collected from the National Oceanic

and Atmospheric Administration (NOAA) climate station (station ID USC00041700)

at Chester, CA. This station is part of NOAA’s Global Historical Climatology Net-

work daily (GHCNd) database (Menne et al., 2012).

4.5 Tree Survey

A tree survey was performed at RCM in July 2020. We collected measurements

of lodgepole pine diameter at breast height (DBH), sapwood depth (Ds), and bark

depth (Db) in 10 random plots (each 625 m2) part of a stratified random sampling

(STRS) design. The measurements were used to develop individual relationships of

Db and Ds versus lodgepole pine DBH for RCM. These relationships were necessary

to scale sap velocity measurements taken in the SFP to all individual trees measured

for DBH in the random plots.

The 10 sample random plots were equally allocated between two strata delineated

in RCM (Figure 4.2). The meadow access road demarcated the border between the

strata. This stratification boundary was convenient, however, it was largely based

on auxiliary information about site vegetation, soil moisture, and groundwater condi-

tions. Aerial imagery of RCM suggested greater vegetation density in the portion of

the meadow west of the road compared to the portion east of the road pre-restoration

(Appendix Figure B.1). Soil moisture is typically higher and depth to groundwater

lower in the western portion of the meadow compared to the eastern portion because

of its proximity to Rock Creek watercourse. The STRS design technique was chosen

to ensure that the lodgepole pine forest at RCM was adequately sampled; implement-

ing simple random sampling may have inadvertently biased sample plots toward one
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of these differing regions. Secondarily, the approach allows for potential decreases in

the standard error associated with population parameter estimates.

DBH was measured for all lodgepole pine greater than 0.025 m using a standard

English diameter tape in all 10 plots. Sapwood and bark depth were measured for

a small representative sub-set of lodgepole pine within each random plot with an

increment borer (Haglöf, Sweden) (Figure 4.7a). Three to five cores were taken per

random plot, with cored trees selected to span a wide range of DBH. For all extracted

samples, the delineation between sapwood and heartwood was based on the darker

color of the heartwood and/or transparency of sapwood (Figure 4.7b). The visual

inspection technique was consistent with methods described in other studies (e.g.,

Hatton et al., 1995; McDowell et al., 2008; Vertessy et al., 1995). These data were used

to develop linear regression equations to predict Db and Ds in non-cored lodgepole

pine at RCM from DBH.

(a) (b)

Figure 4.7: (a) Process of coring a tree with the increment borer. (b) An example
tree core used to determine sapwood depth.
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Simple linear regression (SLR) was used to fit Ds and Db versus DBH, respectively

(Figure 4.8). The relationship betweenDs and DBH was log-log transformed to better

linearize the model and achieve homoscedascity. Prior to transformation, the model

was highly heteroscedastic, showing increased variation in Ds with increased DBH.

Therefore, we used the log-log model to predict Ds from DBH. Diagnostic plots used

to assess satisfaction of SLR assumptions for the two models, including residual versus

fitted values and quantile-quantile plots, are provided in Appendix C.

Db = 0.05 + 0.02 ⋅ DBH ,  R 2 = 0.93
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Figure 4.8: (a) Scatter plot of bark depth (Db) versus DBH and (b) sapwood depth
(Ds) versus DBH in log-log space, both including SLR equation, R2, and line of best
fit. Data (n = 47) in (a) and (b) is from cored trees sampled in the 10 random sample
plots. The original data for DBH and Ds in (b) were in units of cm.

DBH was also measured for all lodgepole pine in the SFP. This was necessary

to estimate transpiration on a per plot basis for the SFP, incorporating the non-

instrumented trees. We also measured DBH for all lodgepole pine in three 25 m

x 25 m plots encompassing RCSM1, RCSM3, and RCSM5. The plots containing
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soil moisture instruments were used for our extrapolation approach involving the

calibrated modified Jarvis-Stewart model.

4.6 Sap Flow Modeling

One objective of this work was to model lodgepole pine sap velocity (vs) from

concurrently monitored environmental variables at RCM, as to assess key drivers of

transpiration during a dry growing season. We especially wanted to incorporate soil

moisture content into the model, as to investigate soil water limitation on transpira-

tion. Another objective was to use the calibrated model to scale lodgepole pine tran-

spiration during the 2020 partial growing season (part of a dry year). This enabled

exploration of how inclusion of spatially variable soil moisture in RCM influenced sap

flow scaling in contrast to scaling informed only by the tree survey. Observations

of vs from the 2020 partial growing season in SFP were used to calibrate a modi-

fied Jarvis-Stewart (MJS) model. Model parameters and uncertainty were estimated

using a Markov Chain Monte Carlo approach and a generalized likelihood function.

Model validation was performed using vs data from the 2021 partial growing season

collected in western RCM (Figure 4.2). The following sub-sections describe the model

data, formulation, calibration, and validation.

4.6.1 Model data

The MJS model was calibrated and validated using the average sap velocity (v̄s)

from instrumented lodgepole pine trees. We computed v̄s by taking the vs from the

measurement depth in each tree that was most frequently the largest (active depth),

and averaging these values across trees as in Link et al. (2014) (Table 4.3). The vs

measurements within each tree taken at the 5, 17.5, and 30 mm radial depths showed

high, positive correlations (Pearson r2 values shown in Table 4.3). Correlation was
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highest in each between the two measurement depths that frequently registered the

highest vs values. Using one measurement depth per tree to calculate v̄s avoided

redundancy.

Both model calibration and validation were performed using normalized average

sap velocity (v̄s,n) (dimensionless). Normalization was performed to eliminate differ-

ences in magnitude between the v̄s measurements taken at the SFP and validation

locales during their respective monitored growing seasons, thus facilitating a fair eval-

uation of model performance. We follow the normalization procedure performed by

Link et al. (2014) by dividing the hourly v̄s measurements by the average of the

hourly 99.5th percentile vs values from each instrumented tree’s active depth (Table

4.3). The observation time series was reduced to an hourly interval, as to diminish au-

tocorrelation between model residuals. Hourly average sap velocity (v̄s) observations

were normalized as follows:

v̄s,n = v̄s/v̄s,max, (4.12)

where v̄s,max is the average of the 99.5th percentile hourly vs values from each instru-

mented tree from either the calibration or validation period.

Model input/forcing data consisted of concurrent hourly observations of incoming

solar radiation, vapor pressure deficit (VPD), air temperature, and volumetric soil

water content (θv). All climatic variables were measured by the climate station at

the SFP. Soil moisture data were taken from RCSM2b and RCSM6 for the SFP and

validation sites, respectively. Model calibration used v̄s,n and input data collected

between April 7 and August 17, 2020, while model validation used data collected

between May 1 and July 6, 2021. April 7th was chosen as the start date for calibra-

tion modeling because this was the day the diurnal (maximum during the day and

minimum at night) pattern indicative of transpiration returned to our sap flow mea-

surements. There would have been a longer period of data for the validation period;
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Table 4.3: Sensor correlation (Pearson r2 coefficient showing sap velocity (vs) corre-
lation between measured radial depths), highest magnitude vs radial depth (active
depth), and 99.5th percentile (PCTL) vs value taken at active depth for each instru-
mented lodgepole pine in the SFP and validation locales.

SFP

Tree
Corr.

(5, 17.5 mm)
Corr.

(17.5, 30 mm)
Corr.

(5, 30 mm)
Active

depth (mm)
99.5th PCTL
vs (cm h-1)a

LP1 0.90 0.90 0.88 17.5 15.27

LP2 0.65 0.76 0.61 17.5 13.57

LP3 0.88 0.79 0.78 5 16.70

LP4 0.82 0.62 0.64 5 12.09

LP5 0.80 0.59 0.57 5 12.69

LP6 na na na 5 17.42

LP7 0.88 0.90 0.88 5 14.75

LP8 0.86 0.86 0.83 30 12.14

— — — — — (14.33)*

Validation

Tree
Corr.

(5, 17.5 mm)
Corr.

(17.5, 30 mm)
Corr.

(5, 30 mm)
Active

depth (mm)
99.5th PCTL
vs (cm h-1)b

LP1v 0.96 0.92 0.92 17.5 25.15

LP2v na na na 5 13.81

LP3v 0.83 0.82 0.81 17.5 9.13

LP4v 0.95 0.94 0.94 5 24.16

LP5v 0.93 0.94 0.93 17.5 12.39

LP6v 0.93 0.74 0.77 5 15.26

— — — — — (16.65)*

a Taken from hourly measurements during period of 04/07 - 08/17/2020.
b Taken from hourly measurements during period of 05/01 - 07/06/2021.
* Average of 99.5th percentile vs from each tree used for normalization (v̄s,max).
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however, the sap flow logger and probes were destroyed in the Dixie Fire in early

August 2021 (damage pictured in Appendix D). Both calibration and validation data

sets excluded times where solar radiation was 0 W/m2 (nighttime) or precipitation

occurred, as done in other studies implementing a MJS model (e.g., Link et al., 2014;

Wang et al., 2016; Whitley et al., 2009, 2013).

4.6.2 Modified Jarvis-Stewart model

We used a modified Jarvis-Stewart (MJS) stomatal conductance model to predict

v̄s,n from environmental variables. Jarvis (1976) originally parameterized stomatal

conductance in terms of empirical functions of environmental modulators using the

following equation:

gc = gmax ∗ fTL
∗ fD ∗ fR ∗ fθv , (4.13)

where gc is stomatal conductance [L T-1], gmax is the maximum stomatal conductance

[L T-1], and fTL
, fD, fR, fθv , ranging 0 to 1 (dimensionless), are stress functions of leaf

temperature, vapor pressure deficit (VPD), solar radiation, and volumetric soil water

content (θv) respectively. Stewart (1988) utilized an air temperature function (fTa)

in their iteration of the model, rather than a function for leaf temperature, which is

why the model is commonly called the Jarvis-Stewart model.

We modify the Jarvis-Stewart model adhering to many of the same assumptions

made by Link et al. (2014). The first assumption is that lodgepole pine transpiration

[L T-1] is proportional to the product of tree bulk canopy conductance (gbc) [L T-1

kPa-1], and the leaf-to-air vapor pressure deficit, which is assumed to be VPD:

T = gbc ∗D, (4.14)
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where D is VPD (kPa). The second assumption is that lodgepole pine transpiration

can also be expressed as the product of v̄s,n (dimensionless) and a coefficient, α [L

T-1]:

T = v̄s,n ∗ α, (4.15)

where α is the product of maximum v̄s (v̄s,max), sapwood cross-sectional area, the

profile of v̄s as a function of radius, and a factor to convert α units from [L3 T-1] to

[L T-1] on the basis of area. The α coefficient is explicitly defined in Section 4.7.2 by

Equation 4.36. Following the Jarvis-Stewart model, gbc is modeled as maximum bulk

canopy conductance (gbcmax) reduced by environmental stress functions including fR,

fD, fTa , and fθv . Substituting this information into Equation 4.14 for gbc and setting

equivalent to Equation 4.14 results in a model for v̄s,n:

v̄s,n =
gbcmax

α
∗D ∗ fD ∗ fTa ∗ fR ∗ fθv , (4.16)

where gbcmax

α
(kPa-1) is a model parameter.

The four stress functions in Equation 4.16 are empirically based and were selected

from the literature. We chose functions used to predict conifer transpiration in a MJS

context that best fit our calibration data set. Solar radiation stress was represented

using an asymptotic function from Whitley et al. (2009):

fR =
R

kR +R
∗ Rmax + kR

Rmax

, (4.17)

where R is incoming solar radiation (W/m2), kR is a fitting parameter (dimensionless),

and Rmax is the maximum observed R during the model calibration period (W/m2).

The VPD response was taken as an asymptotic function:

fD =
1

1 +D/D0

, (4.18)
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where D is VPD (kPa) and D0 is a parameter describing the sensitivity of v̄s,n to VPD

(kPa) (Dang et al., 1997; Link et al., 2014; Lohammar et al., 1980; Looker et al., 2018).

We use a sigmoid type function from Wang et al. (2020) for air temperature:

fTa = e
−ka(Ta−T0)

2

Ta+T0 , (4.19)

where Ta is air temperature (°C), ka is a fitting parameter (dimensionless), and T0 is a

parameter representing the optimal air temperature for v̄s,n after which v̄s,n begins to

decline due to temperature stress (°C). Lastly, v̄s,n modulation by θv was represented

as a sigmoidal approximation of the Feddes et al. (1976) model as in Link et al. (2014):

f(θv) =
1

1 + e−ks(θv−θ0)
, (4.20)

where ks is a parameter describing the rate of decrease in v̄s,n under limiting θv

conditions (dimensionless), and θ0 is the θv value where v̄s,n decline is centered (di-

mensionless). In summary, there are seven model parameters contained in Equation

4.16: gbcmax/α, kR, D0, ka, T0, ks, and θ0.

4.6.3 Model calibration and uncertainty analysis

The posterior distributions of the seven parameters contained in Equation 4.16

were identified using Markov Chain Monte Carlo (MCMC) simulation. We executed

the MCMC approach using a version of the DiffeRential Evolution Adaptive Metropo-

lis (DREAM) algorithm known as DREAM(ZS) (Laloy and Vrugt, 2012). DREAM(ZS)

is a multi-chain MCMC simulation algorithm which yields posterior distributions of

model parameters according to Bayes theorem. The algorithm implements efficient

sampling schemes, lending itself well to a robust assessment of parameter and to-

tal model predictive uncertainty (e.g., errors associated with inputs/forcing data,
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observations, parameters, and model structural inadequacies). The algorithm was

implemented using the DREAM toolbox in MATLAB R2019a (Vrugt, 2016).

We chose the generalized likelihood (GL) function of Schoups and Vrugt (2010) to

measure how well the MJS model fit the hourly v̄s,n time series. In other words, this

was the objective function of the optimization problem DREAM(ZS) used to explore

the parameter space attempting to match MJS model predictions to observations.

The GL function was selected due to its inclusion of an error model that accom-

modates model residual autocorrelation, non-normality, and heteroscedasticity. This

was desirable given our observation data were averaged sap velocity measurements

with high temporal resolution. Inclusion of the GL error model coupled with the

simulation ability of DREAM(ZS) enabled a robust uncertainty assessment, which was

of interest in fitting our model.

The GL function, described in finer detail in Schoups and Vrugt (2010), is written

as:

L(θ, φ | Y, I) = n log
2σξωβ

ξ + ξ−1
−

n∑
t=1

log σt − cβ

n∑
t=1

| aξ,t |2/(1+β), (4.21)

where L(θ, φ | Y, I) denotes the likelihood function that measures how well the model

parameters (θ) and parameters of the error model (φ) fit the observation time series

(Y ), forced by input data (I). In our application of the GL function, Y represents

an n x 1 vector of hourly v̄s,n time series observations and I represents a matrix of

model forcings containing hourly observations of VPD, incoming solar radiation, air

temperature, and θv. MJS model parameters are represented by θ. The following

paragraph describes the GL error model, which accounts for the remaining terms in

Equation 4.21.

The GL error model partitions residuals into components accounting for autocor-

relation, non-constant variance, and non-normality. The model for residual errors is
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given by Schoups and Vrugt (2010) as:

ϕp(B)et = σtat with at ∽ (0, 1, ξ, β), (4.22)

where et is the residual error at time t, ϕp(B) = 1 −
∑p

i=1 ϕpB
i is an autoregressive

(AR) polynomial with p AR parameters ϕi, B is the backshift operator (Biet = et−1),

σt is the standard deviation at time t, and at is an i.i.d random error at time t

with zero mean and unit standard deviation, described by a skew exponential power

(SEP) density with parameters ξ and β to account for non-normality. To account

for residual correlation we assumed an AR model of the third order, AR(3), with

three parameters (ϕ1, ϕ2, and ϕ3) inferred from the data. The AR(3) assumption was

checked a-posteriori. Non-constant variance was considered by the following model

adapted from Schoups and Vrugt (2010) that assumes the error standard deviations

are linearly related to measured v̄s,n:

σt = σ0 + σ1v̄s,n, (4.23)

where σ0 (intercept) and σ1 (slope) are inferred parameters from the data. Lastly,

non-normality of model residuals was handled by a SEP probability density function

with SEP(0, 1, ξ, β) given by:

p(at | ξ, β) =
2σξ

ξ + ξ−1
ωβ exp

{
−cβ | aξ,t |2/(1+β)

}
(4.24)

and

aξ,t = ξ−sign(µξ+σξat)(µξ + σξat), (4.25)

where ξ and β are the skewness and kurtosis parameters, respectively, inferred from

the data. The terms µξ, σξ, cβ, and ωβ were computed as a function of ξ and β as

explained by Schoups and Vrugt (2010).
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Uniform priors were assumed for all MJS model parameters (θ) and error model

parameters (φ) because of the large number of v̄s,n observations (n = 1675). Boundary

conditions for each parameter are provided in Table 4.4. MJS model parameter ranges

were adopted from studies that used the same empirical stress functions if provided

(e.g., Link et al., 2014). Error model parameter ranges were adopted from Vrugt

(2016).

Table 4.4: Boundary conditions for MJS model parameters (PARM(θ)) and GL error
model parameters (PARM(φ)).

PARM(θ) PARM(φ)

Units Minimum Maximum Units Minimum Maximum

gbcmax
α kPa-1 0 9 σ0 – 0 1

kR – 0 20 σ1 – -1 1

D0 kPa 0 2 β – 0 1

ka – 0 1 ξ – 0 10

T0 °C 20 100 ϕ1 – -1 1

ks – 0 200 ϕ2 – -1 1

θ0 – 0.10 0.25 ϕ3 – -1 1

A total of 50000 model simulations were performed by DREAM(ZS) to sample the

parameter space, using three chains. Thinning was applied to each Markov chain to

reduce autocorrelation between successively stored chain samples (Vrugt, 2016). Al-

gorithm convergence to a stable posterior distribution was assessed using the Gelman

and Rubin (1992) R-diagnostic. The final 25% of the simulations meeting convergence

criteria were extracted to construct parameter posterior distributions (7502 simula-

tions following thinning). Parameter uncertainty was obtained for the calibration

data set using these samples by imputing into the MJS model and computing the

95% confidence interval of the model output. The 95% confidence interval of total
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predictive uncertainty was computed using the methodology described in Schoups

and Vrugt (2010) using the error model parameter posteriors.

Model calibration performance was evaluated using two different efficiency criteria:

RMSE =

∑N
i=1(Oi − Yi)

2

N
(4.26)

and

PBIAS = 100

∑N
i=1(Oi − Yi)∑N

i=1Oi

, (4.27)

where N is the number of v̄s,n observations, Oi is the ith v̄s,n observation, and Y

is predicted v̄s,n. Model predictions were computed using the maximum likelihood

parameter estimates (ML) (i.e., optimal parameter set obtained from DREAM(ZS)

that maximized Equation 4.21). Root mean square error (RMSE) provides a measure

of the deviation of model predictions from the observed data, while percent bias

(PBIAS) measures the average tendency of the predicted values to be higher or lower

than their observed counterparts.

4.6.4 Model validation

The ML parameter estimates were used to predict v̄s,n for the validation site dur-

ing the 2021 partial growing season. We computed the 95% confidence intervals of

parameter and total predictive uncertainty for this data set using the same approach

described for calibration. Model performance was evaluated using the efficiency cri-

teria described in Equations 4.26 and 4.27.

4.7 Sap Flow Scaling and Transpiration Estimates

The primary objective of this study was to quantify lodgepole pine transpiration

in RCM using a simple, bottom-up sap flow scaling approach (e.g., Ford et al., 2007;
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Jung et al., 2011; Link et al., 2014; Moore et al., 2004; Solum, 2020). The bottom-up

scaling requires estimation of volumetric sap flow (Q) [L3 T-1] at the tree, plot, and

landscape levels. The following sub-sections describe the approach and assumptions

used to traverse these spatial levels of scale. Our scaling was based on sap flow

measurements taken in the SFP between July 21, 2019 and August 16, 2020. Another

objective was to compare simple scaling lodgepole pine transpiration estimates to

MODIS ET estimates, which is also described. Lastly, we describe a variation of our

scaling performed using the calibrated MJS model ML estimates between April 7 and

August 16, 2020.

4.7.1 Tree level sap flow

Volumetric sap flow (Q) was first estimated for the eight instrumented lodgepole

pine in the SFP. This calculation requires knowledge of the tree diameter at breast

height (DBH), sapwood depth (Ds) and bark depth (Db). These dimensions were

measured for the instrumented trees at the end of the SFP measurement period

(Table 4.5). At each sensor location, disks (one per tree) were obtained to measure

Db and Ds (Figure 4.9a). Sapwood was delineated from heartwood by looking for a

change in the wood color (Figure 4.9b). Ds was measured in all cardinal directions

on the disk and then averaged for a final estimate. The assumption was made that

the disks represented perfect circles so sapwood area could be calculated as the area

of an annulus.

The sap velocity (vs) measurements made at the three radial depths in the in-

strumented trees were used to estimate Q, assuming change in vs with increasing

sapwood depth. The vs radial profile, while sampled at multiple depths, was not well

constrained in the inner portion of the sapwood approaching the heartwood. The

probe featured an innermost radial sensor depth of 30 mm; all of the instrumented
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trees had sapwood exceeding this depth (Table 4.5). Therefore, we estimate Q using

different assumptions for the sampled and non-sampled sapwood in the instrumented

trees.

Table 4.5: Dimensions of the instrumented lodgepole pine in the SFP including di-
ameter at breast height (DBH), bark depth (Db), and sapwood depth (Ds).

Tree
DBH
(cm)

Db

(cm)
Ds

(cm)

LP1 32.0 0.7 8.4

LP2 35.5 0.8 7.8

LP3 19.0 0.3 5.2

LP4 34.0 0.5 7.6

LP5 10.3 0.1 4.0

LP6 17.8 0.2 5.1

LP7 23.5 0.4 5.5

LP8 24.1 0.3 4.9

For the sapwood captured by the three radial depth measurements, we use the

weighted average approach of Hatton et al. (1990). This portion of sapwood area was

divided into three annuli separated by the midpoints between the three vs measure-

ment depths (Figure 4.10). Volumetric sap flow for the annuli sapwood fraction (Q1)

(cm3 h-1), was calculated by

Q1 =
3∑

j=1

Ajvsj , (4.28)

where A is the cross-sectional area (cm2) and vs is the sap velocity measurement (cm

hr-1), both for annulus j.
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(a) (b)

Figure 4.9: (a) Tree disks taken at the sap flow sensor location for the eight lodgepole
pine trees. (b) Disk taken from LP1 with red arrow pointing at the color distinction
used to differentiate between heartwood and sapwood.

Volumetric sap flow for the sapwood not sampled by the probe (Q2) was calculated

with Equation 4.29 modified from Link et al. (2014):

Q2 =

∫ router

rinner

2πrvs(r)dr

= 2πvs

∫ router

rinner

rfp(r)dr,

(4.29)

where r is the radial position on the cross section of the tree (not including bark),

rinner (cm) is the radial position of the heartwood-sapwood boundary, router (cm) is

the radial position of the innermost annulus bounding the sapwood not sampled by

the probe, vs(r) is the vs as a function of radial position in the sapwood (cm h-1),

vs is the sap velocity given by the innermost measurement point (cm h-1), and fp(r)

is a linear function between 0 and 1 describing the radial profile of vs between the

innermost vs measurement point and heartwood (dimensionless). The value of rinner
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Figure 4.10: Schematic for sap flow estimation in instrumented trees. The light
brown area represents sapwood and the dark brown area represents heartwood. The
horizontal white line represents the 35 mm radial probe depth, while the triangle tips
point to the three sap velocity (vs) measurement radial depths on the probe. The
annuli labeled A1, A2, and A3 demarcated by the solid black lines are the sapwood
areas sampled by these measurement points. The annulus bound by the white dashed
lines is the sapwood area not sampled by the probe, which Q2 was approximated by
Equation 4.29.
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was calculated by

rinner = DBH/2−Db −Ds, (4.30)

where DBH is tree diameter at breast height (cm), Db is bark depth (cm), and Ds is

sapwood depth (cm). The value of router was calculated by

router = DBH/2−Db −Da, (4.31)

where Da (cm) is the depth of the innermost annulus bounding the sapwood not

sampled by the probe. For most of the instrumented trees, Da was taken as 3.5 cm;

however, for LP6 where the 17.5 mm and 30 mm measurements were discarded due

to severe misalignment, Da was taken as 1.125 cm (Figure 4.10).

The vs radial profile was approximated following the approach used by Link et al.

(2014) with vs(r) = vsfp(r). The profile is assumed to decline linearly with depth,

based on observations in the literature that vs is lower in the inner sapwood compared

to the outer sapwood in conifers such as lodgepole pine (Berdanier et al., 2016; Ford

et al., 2004; Mark and Crews, 1973). As was completed by Link et al. (2014), we

employ three simple variants of a vs profile given by

fp,1(r) = 1,

fp,2(r) = 1 +
0.5

router − rinner
(r − router), and

fp,3(r) = 1 +
1

router − rinner
(r − router),

(4.32)

where fp,1(r) retains constant vs across the sapwood, fp,2(r) decreases vs linearly to

0.5vs at the heartwood-sapwood boundary, and fp,3(r) decreases vs linearly to zero at

the heartwood-sapwood boundary. The use of three profiles enabled the construction

of a range of possible Q estimates for the instrumented lodgepole pine. The final
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approximation of Q for each instrumented tree was calculated as the sum of Q1

(Equation 4.28) and Q2 (Equation 4.29).

4.7.2 Plot and meadow landscape sap flow

Sap velocity (vs) measurements made in the eight instrumented trees were ex-

trapolated to the SFP and other plots of the same dimension throughout the larger

meadow. We extrapolated vs measurements to the 10 random plots that were part of

the tree survey (Section 4.5). The decision to scale measurements on a per plot basis

rather than over the full areal extent of the meadow was predicated on uncertainty

regarding the extent of lodgepole pine that would be removed from RCM during

restoration.

Plot sap flow (Qp) (cm
3 h-1) was estimated by summing individual tree Q for all

non-instrumented lodgepole pine (i) in a given plot:

Qp = 2πv̄s

N∑
i=1

∫ router,i

rinner,i

rfp(r)dr, (4.33)

where v̄s is average sap velocity from the instrumented lodgepole pine in the SFP (cm

h-1), rinner,i is the radial position of the heartwood-sapwood boundary (cm), and router,i

is the radial position of the bark-sapwood boundary (cm). The v̄s term is the average

sap velocity from instrumented trees calculated from active depth measurements, as

discussed in Section 4.6.1. Equation 4.33 was calculated three times for each plot

using the same vs profiles given by Equation 4.32 for fp(r). Plot transpiration (Tp)

(mm h-1) was calculated from Qp on the basis of plot ground area (625 m2) by

Tp = c ∗Qp, (4.34)

where c is a conversion factor of (1/6.25 x 106 cm2) (10 mm/cm).
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The primary assumption made by Equation 4.33 is that v̄s in non-instrumented

trees declines linearly from v̄s at the bark-sapwood boundary (e.g., Pausch et al., 2000;

Link et al., 2014). We acknowledge that this assumption has potential inaccuracy

associated with it, but it was our best attempt to capture radial variation in vs across

the sapwood without a known profile for lodgepole pine at RCM.

Lastly, the calibrated MJS model was used to inform transpiration estimates

in plots (625 m2) associated with soil moisture set-ups RCSM2b (SFP), RCSM1,

RCSM3, and RCSM5. Equation 4.34 was manipulated to include normalized average

sap velocity (v̄s,n) (dimensionless) predicted with the ML estimates determined for

the calibrated MJS model from DREAM(ZS):

Tp = 2πcv̄s,max ∗ v̄s,n
N∑
i=1

∫ router,i

rinner,i

rfp(r)dr, (4.35)

where v̄s,max is maximum v̄s (cm h-1). This maximum value is assumed to be 14.33

cm h-1 from Table 4.3. Writing Equation 4.35 for a single tree i and factoring out the

v̄s,n term results in the α term in Equation 4.15:

α = 2πcv̄s,max

∫ router

rinner

rfp(r)dr. (4.36)

Thus transpiration is equal to the product of v̄s,n and α.

Transpiration scaling informed by the calibrated MJS model was performed for

the four plots between April 7 to August 16, 2020 (2020 partial growing season). Vol-

umetric soil water content input data for this period were provided by the respective

soil moisture set-up in each plot, while climate input data were given by the climate

station in the SFP for all plots. Model informed plot transpiration estimates were

compared to simple-scaling estimates informed by Equations 4.33 and 4.34.

81



4.8 MODIS ET Estimates

The simple scaling lodgepole pine transpiration estimates were compared with

evapotranspiration (ET) estimates from the moderate resolution imaging spectro-

radiometer (MODIS) Global Terrestrial ET Product. We used the MOD16A2GF

(gap-filled) Version 6 ET product, which is described in Running et al. (2019b). The

product is a 8-day composite dataset produced at 500 m pixel resolution. ET is

calculated under logic of the Penman-Monteith (PM) equation, informed by daily

meteorological inputs along with MODIS remotely sensed data products such as leaf

area index, albedo, and land cover (Running et al., 2019b).

MOD16A2GF product data were retrieved at RCM for the 8-day composites

reflecting the calendar years 2019 through 2020 via the AppEEARS application

(AppEEARS Team, 2020; Running et al., 2019a). Five and three 500 m pixels over-

lapped the eastern and western strata respectively (Appendix Figure B.2). A weighted

average ET value was calculated for all of RCM and the two strata individually in

Environmental Systems Research Institute’s ArcMap 10.8 by determining the per-

centage of each pixel within each meadow area. The sap flow derived transpiration

estimates were summed over 8-day windows to match the MODIS product. Our goal

in comparing lodgepole pine transpiration estimates to the MODIS product was to

verify the magnitude of our estimates and compare the timing of ET or transpiration

between the methods.
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CHAPTER 5: RESULTS

5.1 Environmental Conditions

Hydrometeorological conditions monitored at RCM concurrent with SFP measure-

ments are displayed in Figure 5.1 and 5.2. The presented time series are extended

beyond the period of the SFP measurement campaign, to capture conditions for both

the 2019 and 2020 growing seasons (April through August annually). The extended

period allows a full comparison between the two growing seasons, which is relevant

to the comparison of sap flow measurements between monitored years.

Average daily air temperature ranged between a minimum of -7.94 °C in December

2019 and a maximum value of 21.01 °C in August 2020 (Figure 5.1a). The timing

of the maximum and minimum daily averages aligned with monthly temperature

averages; August 2020 was the warmest (17.55 °C), while December 2019 was the

coldest (-1.02 °C). The temperature cycle monitored during the study aligned with

the historic pattern for the region, which reports peak monthly temperature normals

in July and August and lows in December and January. The annual cycle of vapor

pressure deficit (VPD) followed that of temperature, with peaks in August 2019 and

July 2020 (Figure 5.1b). Maximum average daily solar radiation occurred in late June

in both years, corresponding with the summer solstice. The lowest average daily solar

radiation values were measured on days with high cloud cover, often corresponding

with precipitation events (Figure 5.1c). Overall, climate and energy conditions were

similar between the 2019 and 2020 growing seasons (Table 5.1).

A total of 1102 mm of precipitation fell during the 2019 water year (WY) (October

through September annually) overlapping with the beginning of SFP measurement,

while 512 mm fell during the 2020 WY encapsulating the rest of SFP monitoring.
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Figure 5.1: Meteorological conditions at RCM for the full 2019 and 2020 growing
seasons, encompassing the SFP campaign (dashed vertical lines). From the Control
Meadow climate station (Apr. 1, 2019 - Sep. 3, 2019) and RCM climate station (Sep.
4, 2019 - Aug. 31, 2020): (a) daily average, maximum, and minimum air temperature;
(b) daily average, maximum, and minimum VPD; and (c) daily average incoming and
net solar radiation.
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Table 5.1: Climate data for the two years (2019 and 2020) overlapped by the SFP
campaign at RCM. Total precipitation (P) is presented for the growing season (GS)
period corresponding with each year, along with fall and winter for 2019 and spring
and summer for 2020. Averages and standard deviations for other climate variables
are provided for the same periods in each year.

2019

Measurement GS Fall (SON) Winter (DJF)

Total P (mm) 152 75 243

Avg. Air Temp (°C) 13.5 (9.1) 5.1 (9.2) -0.6 (5.2)

Avg. VPD (kPa) 0.9 (1.0) 0.5 (0.6) 0.1 (0.2)

Avg. Solar Rad (m W-2) 240.7 (397.7) 110.1 (232.2) 53.8 (123.4)

2020

Measurement GS Spring (MAM) Summer (JJA)

Total P (mm) 137 188 41

Avg. Air Temp (°C) 12.8 (10.3) 5.2 (8.5) 16.1 (10.1)

Avg. VPD (kPa) 1.0 (1.1) 0.4 (0.6) 1.3 (1.3)

Avg. Solar Rad (m W-2) 236.7 (384.1) 170.5 (319.8) 261.2 (403.3)
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Most of the precipitation in both years fell as snow, so the majority of reported

yearly totals are snow water equivalents. The 2019 WY featured higher precipitation

compared to the sum of monthly precipitation normals for Chester during a WY (873

mm), while the 2020 WY featured less. Winter 2019 supplied 243 mm of precipitation

to the 2020 WY total (Table 5.1). February 2020 was especially dry providing only

a trace amount (< 1 mm) of precipitation, compared to a February precipitation

normal value of 135 mm (Figure 5.2a). The majority of the precipitation in the 2020

WY occurred between December 2019 and May 2020, which is characteristic for the

region based on the monthly precipitation normals (Figure 5.2a). Solar radiation

measurements from the climate station suggest that the snowpack at the SFP melted

by April 6 of the 2020 WY. No negative net solar radiation values were recorded

after this date (Figure 5.1c and 5.2a). The 2020 growing season provided 137 mm of

precipitation, which is slightly less than the sum of monthly normals for the growing

season months (140 mm). In contrast, the 2019 growing season featured slightly higher

than average precipitation compared to monthly normals (Table 5.1). Relevant to the

MJS model validation period is the 2021 WY precipitation (540.6 mm), which was a

comparable dry year to the 2020 WY. A total of 34.9 mm of precipitation fell during

the 2021 growing season.

Soil moisture conditions monitored in RCM show heterogeneity among measure-

ments taken in different parts of the meadow (Figure 5.2b and 5.2c). Volumetric soil

water content (θv) monitored at the SFP by RCSM2b ranged between 17% and 36%,

with an overall average of 25% (Figure 5.2b and Table 5.2). Temporal trends in SFP

soil moisture measurements were similar to measurements for the upper soil profile

(0-30 cm depth) in the northeast portion of the meadow by RCSM1 (Figure 5.2b

and Table 5.2). Soil moisture was lower on average at these two set-ups compared

to RCSM3 and RCSM5, as these latter instruments were situated in close proxim-

ity to Rock Creek watercourse. Further, RCSM3 and RCSM5 had θv measurements
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Figure 5.2: Hydrological conditions at RCM for the full 2019 and 2020 growing sea-
sons, encompassing the SFP campaign. (a) Daily total precipitation from the Chester
NOAA Station. (b) Average daily volumetric soil water content (θv) for RCSM1 and
RCSM2b shallow profiles, with a red line denoting infilled data for RCSM1. (c) Av-
erage daily θv for RCSM3 and RCSM5 1 m profiles. (d) Daily average groundwater
depth (GWD) for wells. The lighter dashed lines represent the depth of each well
from the surface- data is not displayed once GWD exceeds the well depth and for
periods of instrument failure.
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taken to a 1 m depth, which captured fluctuations in the groundwater table that are

closer to the ground surface in this part of RCM (Figure 5.2c). RCSM5 exhibited the

highest θv during the SFP campaign compared to all other measurement locations,

with 45% average θv and limited θv fluctuation or decline over the course of the 2020

growing season.

Table 5.2: Average volumetric soil water content (θv) for RCM profiles RCSM2b,
RCSM1, RCSM2, and RCSM5 for 2 to 5 month periods and the entire SFP cam-
paign. Parenthetical values represent one standard deviation. Periods were selected
to showcase variability in θv conditions over the SFP campaign.

Avg. θv

Period (mm/dd/yy) RCSM2b RCSM1 RCSM3 RCSM5

07/09/19 - 08/31/19 0.22 (0.01)† 0.21 (0.03) – 0.46 (0.00)

09/01/19 - 11/30/19 0.18 (0.01) 0.23 (0.02) – 0.46 (0.01)

12/01/19 - 04/30/20 0.31 (0.02) 0.30 (0.01) 0.38 (0.07)† 0.44 (0.01)

05/01/19 - 06/30/20 0.26 (0.02) 0.26 (0.02) 0.38 (0.04) 0.45 (0.00)

07/01/20 - 08/31/20 0.19 (0.02) 0.15 (0.03) 0.18 (0.04) 0.42 (0.01)

Sap flow plot campaign

07/21/19 - 08/16/20 0.25 (0.06) 0.25 (0.05) 0.35 (0.09)† 0.45 (0.01)

†30-minute θv data incomplete for respective period

RCSM2b, RCSM1, and RCSM3 exhibited distinct seasonal fluctuations associ-

ated with periods of snowmelt, precipitation events, and growing season soil drying.

Growing season θv decline in 2020 began in late May for RCSM1 and RCSM2b, while

instruments in the wetter part of the meadow showed decline in late June. Figure

5.2b also shows the limited amount of θv data collected at RCSM1 for the 1 m depth

due to sensor failure. The limited data shows little decline in θv in the late 2019

growing season at this depth. Although θv data is not present for the entire 2019

growing season due to instrument installation in early July 2019, late growing season
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θv at RCM was lower in 2020. This likely reflects the difference in total precipitation

between the 2019 and 2020 WYs, especially spring and summer rainfall events post

snowmelt. For example, average θv at RCSM2b for July and August 2020 was 19 ±

1% compared to 22 ± 2% for these same months in 2019. This observation of late

growing season θv is consistent for RCSM1 and RCSM5 (Table 5.2).

Groundwater depth (GWD) measurements indicate the water table was within 1

m of the soil surface for the entire 2019 growing season (0.45 m average GWD) for

wells situated in proximity to Rock Creek watercourse (RCW3, RCW3P, RCW4P, and

RCW6) (Figure 5.2d). In contrast, the GWD dropped below 1 m in these wells during

mid-June 2020 (1.23 m GWD for the 2020 growing season), once again indicating low

precipitation and snowmelt in the 2020 WY. The average GWD for these wells during

the SFP measurement period reflects the conditions of both growing seasons, with an

average depth of 0.97 m.

RCW1 describes the GWD conditions in the eastern portion of the meadow for the

2019 growing season, as RCW2 was installed in the SFP in September 2019. RCW2

is also a shallow well, installed at a 1.41 m depth. During the 2019 growing season,

the water table was within 1 m of the ground surface at RCW1 until the end of June

(1.47 m average GWD). The GWD was below 2 m at this well for the entirety of

the 2020 growing season (2.82 m average GWD) (Figure 5.2d). Average GWD for

RCW1 during the SFP measurement period was 2.71 m. Water was present in RCW2

between April 4, 2020 and May 19, 2020 corresponding with the universal maximum

rise in the water table measured in all other wells during this year (Figure 5.2d).

Water was closest to the ground surface in this well at a depth of 0.81 m on April 15,

2020. Despite the shallowness of RCW2 and similar elevation of RCW2 and RCW1,

the data suggests the water table was higher overall during the 2020 growing season

at RCW2 compared to RCW1.
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5.2 Tree Survey

A total of 1312 trees were surveyed within 14 sample plots in RCM (10 selected

with STRS, 4 plots surrounding soil moisture monitoring sites). The majority of

surveyed trees were lodgepole pine, 1188 total. The 124 trees surveyed that were

not lodgepole pine consisted of 74 white fir (Abies concolor), 40 Jeffrey pine (Pinus

jeffreyi), and 10 aspen (Populus tremuloides). All aspen trees were found in the west

stratum adjacent to the Rock Creek watercourse.

Table 5.3 provides population and sub-population mean estimates of stem density,

basal area, and sapwood basal area calculated from the 10 random plots (5 per stra-

tum). The west stratum featured a higher average lodgepole pine count per hectare

compared to the east stratum. Lodgepole pine with a DBH between 2.5 and 10 cm

comprised the majority of stem density in both strata; however, a higher number of

lodgepole pine greater than 10 cm DBH were found west of the access road. The

combination of higher counts of lodgepole pine and trees greater than 10 cm DBH in

the west stratum compared to the east results in greater lodgepole pine basal area

and sapwood basal area estimates for the western sub-population (Table 5.3).

The lodgepole pine DBH distribution for the random plots separated by strata

is shown in Figure 5.3a and 5.3c. Figure 5.3e shows the entire distribution from

all random plots. The presented histograms highlight the positive skewness of the

lodgepole pine toward smaller DBH size classes for both sub-populations, suggesting

that the encroachment of RCM by lodgepole pine is a current and ongoing process.

Histograms are also provided displaying the lodgepole pine DBH distribution for the

non-random plots to facilitate a comparison with the distributions generated from the

random sample plots (Figure 5.3b and 5.3d). For example, the DBH distribution of

surveyed lodgepole pine in the non-random, western plots featured a lower proportion

of trees between 2.5 and 10 cm DBH (37% of total count) compared to the western
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Table 5.3: Sub-population (strata) and population (RCM) estimates of stem density,
basal area, and sapwood (SW) basal area derived from the tree survey conducted at
RCM via stratified random sampling. Parenthetical values represent one standard
error for the parameter estimate. LP = lodgepole pine.

E. Stratum W. Stratum RCM

Area (ha) 21.125 22.440 43.565

No. Random Plots 5 5 10

Stem Density (ha-1)

LP All DBH 1616.00 (513.25) 1641.60 (427.31) 1629.19 (291.43)

LP DBH >10 cm 275.20 (32.16) 691.20 (201.65) 489.48 (92.58)

LP DBH 2.5 - 10 cm 1340.80 (495.57) 950.40 (293.92) 1139.71 (248.78)

Other tree species 112.00 (60.08) 115.20 (44.22) 113.65 (32.42)

All tree species 1728.00 (493.49) 1756.80 (411.68) 1742.84 (280.46)

Basal Area (m2 ha-1)

LP 15.73 (1.21) 30.56 (6.27) 23.37 (2.89)

Other tree species 6.61 (3.11) 5.77 (2.38) 6.17 (1.70)

All tree species 22.34 (3.58) 36.33 (6.16) 29.54 (3.18)

SW Basal Area∗ (m2 ha-1) 10.77 (0.84) 20.90 (4.01) 15.99 (1.86)

∗estimated using regression equations for lodgepole pine sapwood and bark depth vs. DBH
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stratum random plots (58% of total count). The lodgepole pine DBH distribution

in the eastern, non-random plots was less dissimilar to that produced by the eastern

stratum random plots. In the non-random plots, 79% of the counted trees were

between 2.5 and 10 cm DBH compared to 83% in the random plots.
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Figure 5.3: Histograms of measured DBH for lodgepole pine measured in 14 sample
plots at RCM: (a) in the 5 random sample plots in the west stratum; (b) in the 2
non-random plots encompassing soil moisture set-ups RCSM3 and RCSM5 in the
west stratum; (c) in the 5 random sample plots in the east stratum; (d) in the 2
non-random plots in the east stratum (SFP and plot encompassing RCSM1); (e) in
all 10 random sample plots; and (f) in all surveyed plots. Note the differences in
vertical scale used for each grouping.
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5.3 Sap Velocity Measurements

The lodgepole pine average sap velocity (v̄s) showed seasonal patterns through-

out the SFP monitoring period (Figure 5.4). On close inspection and as shown in

Figure 5.5, sap velocity followed a diurnal pattern (maximum during the day and

minimum at night) with near midday peaks at the beginning of the campaign in late

July and early August 2019 coinciding with high daily VPD, solar radiation, and air

temperatures. The diurnal pattern remained until late November 2019, with the mag-

nitude of daytime v̄s measurements and peaks generally diminishing up to this point

in agreement with the decreasing magnitude of meteorological variables (Figure 5.4

and 5.5b). For the remainder of the monitored fall, winter, and early spring seasons,

the diurnal pattern in v̄s was absent or less distinct, with measurements hovering

around 0 cm h-1 during both night and day. The pronounced diurnal pattern in v̄s

returned in early April 2020, with the daytime v̄s amount increasing into the summer

until a peak in late June (Figure 5.4, 5.5c, and 5.5d). The peak v̄s in late June 2020

was lower compared to the beginning of the monitoring campaign, despite similar

meteorological conditions.

Table 5.4 quantifies the general trends, described above, of lodgepole pine average-

daytime and nighttime v̄s on a seasonal basis. Average-daytime v̄s was highest in the

summer of 2019 (11.54 ± 1.89 cm h-1) compared to all other monitored seasons,

with a maximum daytime-average of 15.47 cm h-1 on July 24, 2019. The summer

2019 average-daytime v̄s was greater than that of summer 2020 (6.05 ± 1.73 cm h-1),

which experienced a maximum daytime-average of 9.22 cm h-1 on June 23, 2020.

From April 1 to August 16, 2020 (2020 partial growing season), the average-daytime

v̄s was 5.11 ± 2.15 cm h-1. Both summers showed appreciable amounts of nighttime

v̄s compared to the other seasons. Negative/reverse v̄s was measured most often in

the winter months during both night and day, but occurred mostly during nights in
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Figure 5.4: (a) 30-minute lodgepole pine average sap velocity (v̄s) and average daily
daytime and nighttime v̄s; (b) average daily VPD; and (c) average daily incoming solar
radiation and air temperature. (a-c) Display data for the SFP monitoring period of
July 21, 2019 through August 16, 2020.
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all other seasons throughout the campaign (Figure 5.4a and Table 5.4). Sap velocity

measurements collected during winter, however, were the noisiest data relative to

measurements from other seasons over the campaign.

Table 5.4: Daytime and nighttime lodgepole pine average sap velocity (v̄s) summary
statistics for the SFP measurement campaign separated by season: Summer (JJA),
Fall (SON), Winter (DJF), and Spring (MAM).

Daytime v̄s, cm h-1

Season mean std max min

Summer 2019† 11.54 1.89 15.47 8.19

Fall 2019 4.44 2.59 10.07 0.07

Winter 2019† 0.43 0.36 1.66 -0.09

Spring 2020 2.80 2.32 8.59 0.08

Summer 2020† 6.05 1.73 9.22 2.35

Nighttime v̄s, cm h-1

Season mean std max min

Summer 2019† 1.10 0.28 1.76 0.60

Fall 2019 0.19 0.28 0.89 -0.30

Winter 2019† 0.35 0.34 1.66 -0.03

Spring 2020 0.24 0.23 1.19 -0.16

Summer 2020† 0.92 0.20 1.50 0.46

†30-minute v̄s data incomplete for season

5.4 MJS Model Calibration

Approximately 16000 simulations of the generalized likelihood (GL) function in

DREAM(ZS) were needed to calibrate the MJS model and achieve convergence ac-

cording to the R-diagnostic of Gelman and Rubin (1992) (Appendix Figure F.1).
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This indicates that the 50000 simulations were more than sufficient in exploring the

parameter space for the model. The parameter posterior distributions obtained from

calibration are shown in Figure 5.6. Every unique combination of parameters from the

distributions represents a reasonable MJS model to predict lodgepole pine normalized

average sap velocity (v̄s,n) in the SFP for the monitored partial growing season. Each

model parameter was well identified by DREAM(ZS) within its assumed uniform prior

distribution range.

The mean and maximum likelihood parameter estimates (ML) from the posterior

distributions are provided in Table 5.5. This includes both parameters from the MJS

model and parameters from the GL function error model used for the total uncertainty

assessment. The ML parameter estimates are the modes of the posterior distributions

shown in Figure 5.6. Also included are the standard deviation and 95% confidence

intervals derived from the distributions.

The degree of parameter independence in the prediction of v̄s,n is shown in Table

5.6 with a matrix of correlation coefficients between the MJS model parameters. In

our analysis, the parameter pair of gbcmax/α and D0 co-varied the most out of all other

pairs with a correlation coefficient of -0.94. The heavy correlation between gbcmax/α

and D0 is consistent with the work of Oren et al. (1999) and Link et al. (2014). There

was also high correlation between T0 and ka. These are the two parameters contained

in the air temperature stress function from Wang et al. (2020), suggesting over-

parameterization of this function. All other parameters in the model were moderately

or minimally correlated. Moderate correlation exists between ka (parameter in the air

temperature stress function) and each of D0 and gbcmax/α (parameters of the VPD

stress function). The moderate correlation between these parameters respective of

the air temperature and VPD stress functions is likely consequence of the known

exponential relationship between VPD and air temperature.
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Table 5.5: Maximum likelihood (ML), mean, standard deviation, lower 95% C.I., and
upper 95% C.I. parameter estimates derived from parameter posterior distributions.
Parameters are separated into MJS model (PARM(θ)) and GL function error model
(PARM(φ)) parameters.

MJS Model

PARM(θ) ML mean std
Lower

95% C.I.
Upper

95% C.I.

gbcmax/α (kPa-1) 2.675 2.501 0.365 1.877 3.294

kR 1.441 1.439 0.180 1.093 1.793

D0 (kPa) 0.372 0.413 0.061 0.301 0.536

ka 0.053 0.049 0.007 0.036 0.063

T0 (°C) 41.880 43.102 2.897 38.370 49.894

ks 57.914 58.241 4.315 50.009 67.144

θ0 0.184 0.184 0.001 0.181 0.186

GL Error Model

PARM(φ) ML mean std
Lower

95% C.I.
Upper

95% C.I.

σ0 0.056 0.057 0.002 0.054 0.062

σ1 -0.009 -0.013 0.005 -0.022 -0.005

β 0.068 0.091 0.050 0.008 0.200

ξ 1.022 1.011 0.035 0.941 1.081

ϕ1 0.774 0.771 0.025 0.723 0.820

ϕ2 0.120 0.125 0.029 0.067 0.180

ϕ3 -0.085 -0.089 0.025 -0.138 -0.042
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Table 5.6: Matrix of correlation coefficients (co-variation) for MJS model parameters
(PARM(θ)).

DREAM(ZS) Posterior Correlation Coefficients

PARM(θ) gbcmax/α kR D0 ka T0 ks θ0

gbcmax/α 1.00 -0.16 -0.94 0.47 0.09 -0.06 0.09

kR -0.16 1.00 0.08 -0.07 -0.17 0.20 -0.03

D0 -0.94 0.08 1.00 -0.64 0.17 -0.01 -0.01

ka 0.47 -0.07 -0.64 1.00 -0.78 0.00 0.06

T0 0.09 -0.17 0.17 -0.78 1.00 -0.06 0.06

ks -0.06 0.20 -0.01 0.00 -0.06 1.00 0.09

θ0 0.09 -0.03 -0.01 0.06 0.06 0.09 1.00

The ML parameter estimates provided well-defined functional dependencies to

describe the relationships between v̄s,n and environmental drivers. Figure 5.7 shows

the non-limited functional dependencies (solid lines) that represent the prediction of

v̄s,n for a given stress function when all other stress functions are fixed at a value

of 1 (indicating that v̄s,n is non-limited by all other functions). Included in Figure

5.7a-d are additional functional dependencies (dotted and dashed lines) representing

how the non-limited curves for each stress function are adjusted with change in other

environmental drivers contained in the MJS model. For example, Figure 5.7c shows

how the prediction of v̄s,n from the air temperature function responds to different

cases of θv. The air temperature function would be adjusted further depending on

values of incoming solar radiation and VPD, but these effects were excluded from the

plot for simplicity.

The identified MJS model ML parameter estimates and resulting functional depen-

dencies suggest varying degrees of sensitivity of lodgepole pine v̄s,n to environmental

drivers during the 2020 partial growing season. Lodgepole pine’s v̄s,n response to
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incoming solar radiation is captured by the shape parameter kR, which describes the

curvature of the assumed asymptotic relationship between v̄s,n and solar radiation.

The ML estimate of kR is very low within it’s assumed uniform prior distribution

range. Accordingly, the solar radiation functional dependency (fR) shows that satu-

ration toward v̄s,n = 1 occurred at approximately 100 W m-2 (Figure 5.7a). In other

words, v̄s,n rapidly increases over low values of solar radiation and fails to increase

further at high values of solar radiation.

The functional relationships between v̄s,n and each of VPD, air temperature, and

θv are tightly coupled to the observed data (Figure 5.7b-c). Average sap velocity

gradually increased with increasing VPD, with an evident plateauing effect at high

VPD values (Figure 5.7b). This relationship is controlled by the parameters D0 and

gbcmax/α. It appears, however, that the plateauing effect at high VPD values is over-

exaggerated when other environmental drivers are conducive to non-stressed/limited

v̄s,n (e.g., θv > 0.35, Figure 5.7b). The non-limited VPD functional dependency (fD)

does not reach v̄s,n = 1 over a realistic domain of VPD values (Figure 5.7b). The

sigmoidal air temperature functional dependency (fTa) shows the greatest rate of v̄s,n

increase between approximately 0 and 25 °C, with leveling toward maximum v̄s,n

after approximately 30 °C. The upper threshold of 41.88 °C is represented by the T0

parameter, after which v̄s,n is assumed to decrease due to temperature stress. Lastly,

the fitted sigmoidal θv functional dependency (fθv) results in a decline of v̄s,n due to

soil moisture centered around the θ0 parameter of 0.184. The θv function dictates

little v̄s,n limitation when θv is greater than 0.25 (Figure 5.7d). The parameter ks

controls the rate of decline in fθv with decreasing θv values that are perceived as

limiting to v̄s,n.

102



D = 1 kPa

D = 0.25 kPa

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1000 1250

Solar Radiation (R), W m2

N
or

m
al

iz
ed

  v
s

1 2 3 4 5

D, kPa

kR = 1.441

Solar radiation stress function, fR
(a)

θv = 0.2

θv = 0.18

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6

VPD (D), kPa

0.20 0.25 0.30 0.35

θv

gbcmax/α = 2.675/kPa; D0 = 0.372 kPa

VPD stress function, fD
(b)

θv = 0.2

θv = 0.18

0.00

0.25

0.50

0.75

1.00

−10 0 10 20 30 40

Air Temp (Ta), °C

N
or

m
al

iz
ed

  v
s

0.20

0.25

0.30

0.35

θv

ka = 0.053; T0 = 41.880 °C

Air temp. stress function, fTa

(c)

Ta = 20 °C

Ta = 10 °C

0.00

0.25

0.50

0.75

1.00

0.1 0.2 0.3 0.4

VWC (θv)

0

10

20

30

Ta, °C

ks = 57.914; θ0 = 0.184

VWC stress function, fθv

(d)

Figure 5.7: Hourly normalized average sap velocity (v̄s,n) response to environmental
drivers for the calibration period. The functional dependencies under non-limiting
conditions prescribed by the MJS model ML parameter estimates for each driver are
shown by the solid lines, while examples of limiting conditions are indicated by dotted
and dashed lines: (a) v̄s,n vs. solar radiation with different cases of VPD; (b) v̄s,n vs.
VPD with different cases of θv; (c) v̄s,n vs. air temperature with different cases of θv;
and (d) v̄s,n vs. θv with different cases of air temperature.
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5.5 MJS Model Performance and Validation

The performance of the MJS model ML parameter estimates for the calibration

and validation periods is shown in Table 5.7. As expected, the variation in the ob-

served data was better explained by the model during the calibration period compared

to the validation period. The RMSE of 0.087 for calibration equates to an average sap

velocity of 1.25 cm h-1 after removing the normalization constant (v̄s,max = 14.33 cm

hr-1). The ML parameter estimates had an average tendency to under-predict v̄s,n,

with negative PBIAS for both periods. Negative PBIAS was worse/more extreme for

the calibration period compared to validation, which was a counterintuitive result.

We discuss this further in Section 6.3.

Table 5.7: Model efficiency criteria for the calibration and validation periods.

Period RMSE PBIAS (%)

Calibration 0.0874 -6.579

Validation 0.1233 -2.873

A further evaluation of fit quality for the calibration and validation periods is

provided by Figure 5.8. We observed a strong linear relationship between observed

and predicted values for the calibration period, with a slope of linear regression close

to 1 (Figure 5.8a). The linear fit for the validation is also strong (slope = 0.9), but

features greater scatter around the SLR line, corresponding with the larger RMSE

computed for this period relative to calibration (Figure 5.8b). The linear regressions

coupled with 1:1 lines illuminate the negative PBIAS for both periods. The SLR

regression line intersects and dips below the 1:1 line at an approximate observed

v̄s,n value of 0.18 for the calibration period and 0.33 for validation, highlighting the

tendency of the MJS model to under-predict high v̄s,n values.
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Figure 5.8: MJS predicted vs. observed normalized average sap velocity (v̄s,n) for
the (a) calibration and (b) validation periods including 1:1 line (dashed-green), SLR
regression line (blue), regression equation, and R2 value.

Figure 5.9 provides a qualitative point of comparison for the v̄s,n environmental

driver response between the calibration and validation periods. Notably, the func-

tional dependencies informed by the ML parameter estimates (from calibration) for

incoming solar radiation, VPD, and air temperature were similarly coupled to ob-

servations of v̄s,n for the validation period (Figure 5.9a-c). The similar RMSE and

closeness to the 1:1 line for calibration and validation provides quantitative evidence

that v̄s,n responded similarly to climatic environmental drivers between the 2020 and

2021 growing seasons (Figure 5.8). Figure 5.9d reveals that we were unable to evaluate

the validation performance under the full range of soil moisture conditions perceived

as limiting by the calibration period. We only recorded θv values at the validation

site between approximately 23% and 30%, due to the Dixie Fire destroying the sap

flow set-up in early August 2021.
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Figure 5.9: Hourly normalized average sap velocity (v̄s,n) response to environmental
drivers for the validation period. The functional dependencies under non-limiting
conditions prescribed by the MJS model ML estimates for each driver are shown by
the solid lines, while examples of limiting conditions are indicated by dotted and
dashed lines: (a) v̄s,n vs. solar radiation with different cases of VPD; (b) v̄s,n vs.
VPD with a different case of θv; (c) v̄s,n vs. air temperature with a different case of
θv; and (d) v̄s,n vs. θv with different cases of air temperature.
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The parameter uncertainty associated with model predictions for the calibration

and validation periods is presented in Figure 5.10. The 95% confidence parame-

ter uncertainty band was determined using the last 7502 MJS model parameter sets

identified by DREAM(ZS). Expanding on Figure 5.8, our parameter uncertainty inter-

val communicates the timing of the model’s tendency to under-predict v̄s,n. Under-

prediction was most common around midday peaks, as this time of day corresponds

with observations of high sap flow. The inset graphs in Figure 5.10 emphasize that

the parameter uncertainty bands, let alone the ML parameter estimates, frequently

fail to envelop midday v̄s,n observations.

Figure 5.11 shows a 95% total predictive uncertainty confidence interval for the

calibration and validation periods. Similar to the parameter uncertainty, the total

predictive uncertainty was determined with the last 7502 DREAM(ZS) model simula-

tions, but using the GL function error model parameter posterior distributions and

the algorithm of Schoups and Vrugt (2010). Our predictive uncertainty bands envelop

very close to the theoretically expected 95% of total v̄s,n observations for the calibra-

tion period. The interval envelops a comparable 81.8% of total observations from the

validation period. Contrasting the parameter uncertainty interval displayed in Figure

5.9 with Figure 5.11, reveals that the parameter uncertainty is minimal relative to the

total predictive uncertainty for both calibration and validation. Accordingly, almost

all of the midday v̄s,n observations are captured in the total uncertainty band for both

periods.
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5.6 Volumetric Sap Flow and Transpiration Estimates

5.6.1 Sap flow plot estimates

The sap velocity (vs) measurements from the eight lodgepole pine in the SFP

were used to estimate volumetric sap flow (Q) for each instrumented tree. Figure

5.12 displays daily Q estimates from four of the instrumented trees, produced by the

fp,1(r) and fp,3(r) sap velocity radial profiles. The four trees shown in Figure 5.12

were chosen because they showcase the variability of Q among the trees due to tree

size and within tree Q variability due to the assumed radial profile. The fp,1(r) and

fp,3(r) radial profiles provide an upper and lower Q estimate respectively.

Given the scaling approach implemented, the estimated daily Q for each instru-

mented tree was a function of measured vs and sapwood depth (Ds). Estimates ranged

between a maximum total Q given by LP1 and minimum Q given by LP5 (Figure

5.12a and 5.12c). The daily Q estimates produced by the largest (LP1) and smallest

(LP5) trees in terms of Ds differed by approximately one order of magnitude over

the course of the campaign. Additionally, there is little difference in the Q estimates

produced by the two shown profiles for LP5 because the sap flow probe sampled most

of the sapwood depth for this small tree. The time series for LP4 and LP6 represent

intermediate daily Q values produced by trees with Ds between that of LP1 and LP5

(Figure 5.12b and 5.12d). Although similar to LP1 in terms of Ds, LP4 produced

slightly over half of the total Q of LP1 for the monitoring campaign (8.42 x 106 cm3

versus 1.21 x 107 cm3 given by fp,3(r)) (Figure 5.12b). The discrepancy is largely due

to differences in measured vs between these trees. Figure E.2 provides daily Q for

the other four instrumented lodgepole pine, further highlighting the between tree Q

variability.
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Figure 5.12: Daily volumetric sap flow (Q) estimates for LP1, LP4, LP5, and LP6
given by the fp,1 and fp,3 sap velocity radial profiles over the SFP monitoring period.
Note the differences in vertical scale used for the 4 trees.
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The daily transpiration estimates for the SFP over the monitoring period are

presented in Figure 5.13. The daily transpiration quantity represents the sum of

the Q estimated for the eight instrumented lodgepole pine and Q estimated for non-

instrumented lodgepole pine converted to depth. Daily transpiration ranged from a

maximum of 1.27 mm/d - 1.73 mm/d in late July 2019 to a minimum of 0.001 - 0.01

mm/d in early January 2020, with the bounds for these estimates given by fp,3(r)

and fp,1(r) respectively. The peak daily transpiration for the 2020 partial growing

season was estimated between 0.68 and 0.93 mm/d and occurred in late June. Total

transpiration for the monitoring period was computed between 116.62 mm and 160.19

mm. Table 5.8 further summarizes the transpiration estimates for the SFP by season

and radial profile.
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Figure 5.13: Daily transpiration (T) estimates for the SFP over the monitoring period
by sap velocity radial profile.
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Table 5.8: Seasonal SFP transpiration (T) total and mean daily transpiration es-
timates by sap velocity radial profile. Parenthetical values represent one standard
deviation of the mean. GS = growing season.

Total T, mm Avg. Daily T, mm/d

Season fp,1(r) fp,2(r) fp,3(r) fp,1(r) fp,2(r) fp,3(r)

Summer 2019† 47.77 41.32 34.87 1.14 (0.24) 0.98 (0.21) 0.83 (0.17)

Fall 2019 33.51 28.95 24.41 0.37 (0.21) 0.32 (0.18) 0.27 (0.16)

Winter 2019† 5.77 4.91 4.07 0.10 (0.05) 0.08 (0.04) 0.07 (0.01)

Spring 2020 26.82 23.09 19.38 0.29 (0.22) 0.25 (0.19) 0.21 (0.16)

Summer 2020† 45.73 39.59 33.46 0.59 (0.18) 0.51 (0.16) 0.43 (0.13)

Partial GS 2020† 69.89 60.41 50.95 0.51 (0.21) 0.44 (0.19) 0.37 (0.16)

†T estimate incomplete for season

5.6.2 RCM estimates

The methodology to estimate lodgepole pine transpiration in the SFP was ex-

tended to the 10 random plots of the same dimension located in the eastern and

western strata at RCM. The time series of daily average transpiration by strata and

vs radial profile are pictured in Figure 5.14. The difference in estimated daily tran-

spiration between the west and east strata is explained by the lodgepole pine stem

counts and estimated sapwood depths, used in the simple scaling approach. Table

5.9 summarizes the seasonal transpiration totals determined by strata.

The estimates presented in Table 5.9 allow comparison of transpiration between

the two demarcated regions in RCM, as well as a comparison of transpiration esti-

mated for eastern stratum plots with that estimated for the SFP. A larger amount

of total transpiration was estimated on a per plot basis in the western stratum com-

pared to the east, due to the higher lodgepole pine density and higher counts of trees
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Table 5.9: Seasonal stratum mean transpiration (T) total estimates by sap velocity
radial profile. Italicized values represent one standard error of the mean. GS =
growing season.

Season Total T, mm (East) Total T, mm (West)

fp,1(r) fp,2(r) fp,3(r) fp,1(r) fp,2(r) fp,3(r)

Summer 2019† 78.05 60.99 43.93 151.28 117.98 84.67

6.10 4.82 3.54 29.03 22.54 16.05

Fall 2019 55.83 43.62 31.42 108.22 84.39 60.57

4.37 3.45 2.53 20.76 16.12 11.48

Winter 2019† 7.09 5.54 3.99 13.74 10.72 7.69

0.55 0.44 0.32 2.64 2.05 1.46

Spring 2020 42.79 33.43 24.08 82.94 64.68 46.42

3.35 2.64 1.94 15.91 12.35 8.80

Summer 2020† 81.45 63.65 45.84 157.89 123.13 88.37

6.37 5.03 3.69 30.30 23.52 16.75

Partial GS 2020† 120.50 94.16 67.82 233.58 182.15 130.73

9.43 7.44 5.46 44.82 34.79 24.78

†T estimate incomplete for season
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with large DBH (Table 5.3; Figure 5.3). Average total transpiration for random plots

in the eastern strata was estimated between 149.74 ± 12.06 mm and 266.05 ± 20.81

mm, given by fp,3(r) and fp,1(r) respectively for the monitoring period. Average total

transpiration for the random plots in the western stratum close to doubled that for

the east, with estimates between 288.64 ± 54.71 mm and 515.72 ± 98.96 mm. The

transpiration total estimated for the SFP alone (116.62 - 160.19 mm), was noticeably

less than the average per plot estimate for the eastern stratum. Both the upper and

lower total transpiration estimate for the SFP given by fp,1(r) and fp,3(r) were outside

the range of values encapsulated by one standard error of these respective estimates

for the eastern stratum.

We used our average per plot transpiration estimates for the two strata to estimate

transpiration for RCM as a whole. This statistic was calculated in the framework of

the STRS design employed in this study. Average total transpiration for RCM was

estimated between 220.57 ± 25.28 mm and 393.39 ± 45.65 mm, given by fp,3(r) and

fp,1(r) respectively for the entire monitoring period. Table 5.10 summarizes total

transpiration for the meadow by season.

Lastly, we compared our lodgepole pine transpiration estimates based on average

sap velocity (v̄s) measurements and the tree survey to MODIS derived evapotranspi-

ration (ET) (MOD16A2GF product). Figure 5.15 facilitates a comparison of seasonal

timing between lodgepole pine transpiration and MODIS ET estimates. The timing

of peak MODIS ET and sap flow based transpiration was similar in the 2019 growing

season. MODIS ET peaked during the 8-day period of July 12 through 19. The high-

est 8-day transpiration from the 2019 growing season was July 28 through August

4; however, this sum was very similar to the preceding composite given for July 20

through 27 that summed one less day due to the SFP campaign beginning on July

21, 2019. Transpiration for the 2019 growing season decline began in early August,

matching the general trend of the MODIS estimates. The timing of peak MODIS ET
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Table 5.10: Seasonal RCM transpiration (T) estimates by sap velocity radial profile.
Parenthetical values represent one standard error of the mean. GS = growing season.

Total T, mm

Season fp,1(r) fp,2(r) fp,3(r)

Summer 2019† 115.77 (13.43) 90.34 (10.43) 64.91 (7.44)

Fall 2019 82.81 (9.61) 64.62 (7.46) 46.43 (5.32)

Winter 2019† 10.51 (1.22) 8.21 (0.95) 5.90 (0.68)

Spring 2020 63.47 (7.36) 49.53 (5.72) 35.59 (4.08)

Summer 2020† 120.82 (14.02) 94.28 (10.89) 67.75 (7.76)

Partial GS 2020† 178.75 (20.74) 139.49 (16.11) 100.22 (11.49)

†T estimate incomplete for season

during the 2020 growing season was more dissimilar to peak lodgepole pine transpi-

ration. Lodgepole pine transpiration peaked for the 8-day period of June 17 through

24, while the largest MODIS ET composite was May 24 through 31. The MODIS

estimates perceive a discrepancy in peak ET between 2019 and 2020, similar to what

was seen between years in our transpiration estimates.

Figure 5.16 plots the difference (residuals) between the 8-day MODIS ET compos-

ites and the lodgepole pine transpiration estimates for the sap velocity radial profiles.

Residuals given for each profile and estimation area are for the most part positive

values. The east stratum shows the greatest positive residuals out of the three esti-

mation areas. Each of RCM, the east stratum, and the west stratum featured positive

residuals that gradually increased in magnitude over the course of winter 2020 into

the spring before decreasing toward 0 in the summer. A similar trend is present in

2019 between summer and fall. Large negative residuals are observed for the west

stratum in late July and early August 2019, especially for fp,1(r) and fp,2(r). Negative

117



residuals are also seen for RCM and the east stratum in these months, albeit not as

extreme.
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Figure 5.15: Time series of 8-day composite MODIS ET estimates compared with
8-day composite lodgepole pine transpiration (T) estimates by sap velocity radial
profile for (a) RCM, (b) east stratum, and (c) west stratum. Ribbons represent ± 1
standard deviation of the MODIS ET 8-day composite, weighted mean.
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Figure 5.16: Time series of residuals between 8-day composite MODIS ET estimates
and 8-day composite lodgepole pine transpiration (T) estimates by sap velocity radial
profile for (a) RCM, (b) east stratum, and (c) west stratum.
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5.6.3 MJS informed plots

The calibrated MJS model was used to estimate lodgepole pine transpiration for

the 25 m x 25 m plots containing soil moisture instruments as shown in Table 5.11

and Figure 5.17. As a reminder, simple scaling transpiration estimates refers to those

derived from average sap velocity measurements in the SFP and tree survey results

in a given plot. Lodgepole pine transpiration estimates informed by the MJS model

were most similar to those produced by the simple scaling for the SFP out of all

plots. Simple scaling estimates were slightly greater than MJS estimates for the SFP

due to behavior of the model to, on average, under-predict observed sap velocity.

Furthermore, the MJS model does not consider nighttime transpiration.

Table 5.11: Comparison of lodgepole pine transpiration totals in soil moisture con-
taining plots informed by the calibrated MJS model and simple scaling for the period
of April 7 through August 16, 2020.

Total T, mm (MJS) Total T, mm (Simple)

Plot fp,1(r) fp,2(r) fp,3(r) fp,1(r) fp,2(r) fp,3(r)

SFP (RCSM2b) 65.23 56.67 48.13 69.34 59.94 50.56

RCSM1 58.31 44.98 31.65 90.03 69.45 48.87

RCSM3 70.91 55.53 40.15 85.59 67.02 48.46

RCSM5 320.27 248.10 175.93 303.92 235.43 166.95

MJS model informed lodgepole pine transpiration estimates differed more notice-

ably from those produced by simple scaling in plots RCSM1, RCSM3, and RCSM5.

RCSM1 featured the most extreme differences in estimated transpiration. RCSM1

volumetric soil water content (θv) dipped below 18.4% (ML θ0 parameter estimate)

on July 6, 2020 and continued to diminish into the growing season leading to low pre-

dictions of sap velocity by the model and consequently low transpiration estimates

(Figure 5.17b). Similarly, θv dropped below 18.4% in RCSM3 on July 27 leading to
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low and steadily declining transpiration estimates following this date (Figure 5.17c).

The soil moisture limitation perceived by the calibrated MJS model led to smaller

transpiration estimates in both RCSM1 and RCSM3 compared to the simple scal-

ing (Table 5.11). RCSM5 was the only plot to feature transpiration estimates greater

than those generated by simple scaling. RCSM5 θv hovered around 40% for the entire

2020 growing season. The MJS estimates for RCSM5 did not decline into August as

opposed to simple scaling estimates because the model assumed θv was non-limited.
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CHAPTER 6: DISCUSSION

6.1 Qualitative Assessment of Sap Velocity Measurements

Sap velocity (vs) measurements were collected in the same eight lodgepole pine in

the sap flow plot (SFP) for an approximate 1-year period, overlapping partially with

the 2019 and 2020 growing seasons. The lodgepole pine vs measurements followed

a distinct diurnal pattern indicative of transpiration during each growing season.

The pattern was also present for data collected during fall 2019 (September through

November), corresponding with decreases in soil moisture and available energy.

The diurnal pattern in the vs data was absent or sporadic for late fall 2019,

winter 2019, and early spring 2020 corresponding with low daily solar radiation, air

temperature, and vapor pressure deficit (VPD) (Figure 5.4 and 5.5). Each of these

seasonal periods are indicative of energy/climatic limiting conditions for transpiration.

Winter of 2019 featured the lowest sap velocities out of any other season during the

SFP campaign, with a mean daytime lodgepole pine average sap velocity (v̄s) of 0.43

± 0.36 cm h-1 (Table 5.4). The magnitude of v̄s for late fall 2019 and early spring

2020 was similar to the monitored winter. Past studies, focused on sub-alpine Sierra

Nevada ET, have suggested a low air temperature threshold of 5 °C for conifer water

use during winter (Cooper et al., 2020; Goulden et al., 2012). Although RCM is at

a lower elevation than sub-alpine, our low sap velocities are qualitatively consistent

with this literature. Average daytime air temperatures at RCM during periods during

late fall 2019, winter 2019, and early spring 2020 hovered around 5 °C on most days.

Further, the disappearance of the v̄s diurnal pattern in late November 2019 was

coincident with decreases in air temperature below this threshold (Figure 5.4 and

5.5a). The return of the diurnal pattern in early April 2020 coincided with increases
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in air temperature above the 5 °C threshold and the inferred snow pack disappearance

at the SFP from net solar radiation measurements (Figure 5.1c, 5.4, and 5.5c).

We observed differences in the lodgepole pine v̄s measurements between the two

partial growing seasons enveloped by the SFP monitoring period (Figure 5.4). The

inter-growing season variability in v̄s is likely attributable to soil water differences be-

tween years due to differences in precipitation, as other climatic and energy conditions

were similar (Table 5.1). The 2019 WY had greater precipitation than an average

year, while the 2020 WY had lower precipitation than average. The annual precipita-

tion differences were reflected in volumetric soil water content (θv) and groundwater

depth (GWD) between years at RCM (Figure 5.2; Table 5.2). Depth to groundwater

at RCW2, representative of the GWD conditions at the SFP, was only within 1 m

of the ground surface for a brief period in April 2020. Conversely, the 2019 growing

season GWD conditions in eastern RCM given by RCW1 show water within 1 m of

the soil surface until early July. The deeper groundwater in 2020 may have influenced

the amount of soil water in the vadose zone available for tree use and contributed to

earlier soil drying in the 2020 growing season relative to the 2019 growing season.

This study does not allow any definite conclusions to be made as to why we ob-

served such a considerable difference in the v̄s between years. Peak v̄s corresponded

with near identical θv at 45 cm soil depth between 2019 and 2020, 22.5% versus

23.6% respectively. The enhancement in v̄s in 2019 compared to 2020 suggests that

the lodgepole pine in the SFP accessed more abundant soil water located deeper in

the soil profile, which was available later into the growing season due to sufficient

winter precipitation. Similar observations have been noted for other conifer species

during the growing season with antecedent dry and wet winters (Brito et al., 2015; Liu

and Biondi, 2020). This speculation would be better substantiated had we measured

θv deeper in the soil profile. We did, however, conduct a three-dimensional electrical

resistivity tomography (ERT) survey over the SFP in July 2020 and July 2021, pro-
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viding evidence that the lodgepole pine in the plot accessed soil water deeper than 45

cm. The survey images are shown in Appendix G. The survey from 2020 (pre lodge-

pole pine removal) showed patches of high resistivity up to 3 m in depth overlapping

with instrumented trees, suggesting soil water uptake from this depth (Figure G.1a,

G.2a, and G.3a). As a precise rooting depth is not known, there is the possibility

that the areas of high resistivity deeper in the soil profile were the result of moisture

depletion due to capillary action. Regardless, the depth of high resistivity measure-

ments suggest the lodgepole pine influenced deeper soil water by some mechanism,

especially with surveys taking place in the late growing season. The 2021 ERT survey

indicative of post lodgepole pine removal provided corroborating evidence, as resis-

tivity was lower in these same patches compared to 2020 (Figure G.1b, G.2b, and

G.3b). As previously stated, 2020 and 2021 were comparable dry years.

Our v̄s measurements in fall 2019 qualitatively suggest that precipitation events

that supplement shallow soil moisture augment lodgepole pine transpiration. For

example, we observed an increase in v̄s in late September 2019 following a steady

decrease in v̄s throughout August 2019 (Figure 5.4a). This spike was preceded by

several days with rainfall (26.1 mm) and an increase in θv at a 0-30 cm soil depth

at RCSM1 (Figure 5.2a and 5.2b). There was no θv increase associated with this

rainfall at the SFP given by RCSM2b, but sensors were positioned deeper compared

to RCSM1. Late July 2020 featured a substantial rainfall event (32.5 mm) registered

by the NOAA Chester station, but this was unaccompanied by any noticeable increase

in v̄s at the SFP. There is evidence to suggest, however, that this rainfall did not

occur at RCM or was lesser in amount, as none of the soil moisture instruments

registered an increase in θv during this time (Figure 5.2b-c).
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6.2 Water Use Response to Drivers During the Dry Growing Season

The calibrated MJS model highlights the sensitivity of lodgepole pine transpi-

ration to energy, atmospheric evaporative demand, and soil water during the 2020

growing season, part of a dry year. Similar to other studies on conifers, fluctuations

in solar radiation, VPD, and air temperature appear to modulate the diurnal vari-

ability in lodgepole pine v̄s, while soil moisture appears to regulate these relationships

in the late growing season (e.g., Link et al., 2014; Looker et al., 2018; Oren et al.,

1998a; Pataki et al., 2000). We note that we only monitored and modeled shallow

soil moisture, but feel the depth was representative given it was a dry year. Lodge-

pole pine reached near-maximum transpiration when VPD was above 3.5 kPa and air

temperature was greater than 30 °C, when 45 cm θv exceeded a threshold of approx-

imately 0.23. The effect of declining θv on the relationship between v̄s,n and each of

VPD and air temperature is apparent in Figure 5.7b-d.

Lodgepole pine v̄s,n decline in the 2020 growing season corresponded with an

approximate decrease in θv from 0.23 to 0.17 between late June and mid-August.

Shallow soil moisture was not greatly supplemented by rainfall during this period

(Figure 5.2a-b). The soil moisture parameter, θ0, prescribes that the v̄s,n decline is

centered on a θv value of 0.184. The range of θv coincident with v̄s,n decline and

θ0 parameter estimate is comparable to the results of other studies that assessed

conifer sap flux density/sap velocity/stomatal conductance response to declining soil

moisture. For example, Oren et al. (1998a) found declines in Pinus taeda stomatal

conductance at a θv threshold of 0.22 in a clay loam soil. Pataki et al. (2000) observed

a decline in Pinus contorta ssp. latifolia sap flux density when soil moisture declined

from 0.35 to 0.24 at 0-45 cm depth in an inceptisol during the late growing season of

a drought year. We acknowledge, however, that differences in soil properties between

sites likely impart variation in tree water use response to soil water conditions. The
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SFP in this study featured a sandy loam soil textural class, which typically has field

capacity between 0.16 and 0.22, and a wilting point of 0.073 θv (Dunne and Leopold,

1998). Our observations of v̄s,n decline and θ0 model parameter fall within these field

capacity bounds, but this might be expected because conifers have been shown to be

conservative with water use, especially in drought years (e.g., Royce and Barbour,

2001). The other soil moisture function parameter, ks, describes the rate of v̄s,n

decline under limiting θv conditions. Because we did not have observations of θv <

0.17 at the SFP, the decline rate parameter for our site is not well constrained for θv

< 0.17.

The analysis performed in the present study does not allow us to determine the

relative strength of the solar radiation, VPD, air temperature, and θv functions in

predicting normalized average sap velocity (v̄s,n) over the duration of the 2020 par-

tial growing season. A potential approach to disentangle the effects of environmental

drivers on v̄s,n with time is to examine the MJS model sensitivity coefficients. Sensitiv-

ity coefficients, in the context of the MJS model used in this study, are the derivatives

of model-predicted v̄s,n with respect to model parameters. These coefficients would

allow determination of the model parameters having the strongest influence on the

prediction of v̄s,n at a given time step. The sensitivity coefficient analysis would have

been useful in the early growing season for the calibration period, as to assess what

climatic variables were most important in predicting v̄s,n when soil moisture was non-

limiting. Computation of sensitivity coefficients, however, were outside the scope of

the present work.

6.3 Model Performance Using DREAM(ZS) and the GL Function

Several studies have empirically parameterized a MJS model to predict conifer sap

velocity/sap flux density or transpiration. Some works have used a MCMC approach
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(e.g., Link et al., 2014; Wang et al., 2016, 2020), while others have used optimization

routines such as the genetic algorithm and quasi-Newton gradient descent method

(e.g., Guyot et al., 2017; Whitley et al., 2013). This present study detailed use of

the DREAM(ZS) MCMC algorithm and a generalized likelihood (GL) function in an

attempt to avoid severe violations of residual autocorrelation, non-normality, and

heteroscedasticity. The approach also allowed an uncertainty assessment for the cali-

bration and validation periods, which is useful when discussing model limitations and

generalities. Uncertainty analysis and residual violations are typically not thoroughly

addressed in empirical MJS parameterizations (Ford et al., 2005).

DREAM(ZS) and the GL function identified all MJS model parameters within their

assumed uniform prior ranges for the calibration period (Figure 5.6a). We integrated

various MJS model errors (e.g., errors associated with inputs/forcing data, observa-

tions, parameters, and model structural inadequacies) using the GL function that

accounts for residual non-normality, autocorrelation, and heteroscedasticity. Similar

to the MJS model parameters, the error model parameters were well identified by

DREAM(ZS) within their assumed uniform prior distributions (Figure 5.6b).

We produced several diagnostics plots to aid with a discussion of the performance

of GL-DREAM(ZS) regarding MJS model error residual non-normality, autocorrela-

tion, and heteroscedasticity (Appendix Figure F.2). The residual error for the cali-

bration period showed a relatively normal distribution with parameterizations of the

kurtosis (β) and skewness (ξ) close to 0 and 1 respectively (Table 5.5, Figure 5.6b, and

Figure F.2c). Figure F.2d shows the residual autocorrelation plot, which indicates

that the calibration period residuals still exhibit statistically significant dependence

at higher time lags. The temporal autocorrelation was substantially lessened com-

pared to when we parameterized the model using a formal likelihood function assum-

ing temporally independent and normally distributed residuals (results not shown).

Given the short 1-hour observation interval used in the MJS model for this study,
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the difficulty of removing residual autocorrelation completely is understandable. A

more complex error correlation model is likely needed, but this was not rigorously

explored. Regarding residual heteroscedasticity, the plot of residuals versus predicted

values indicates the calibration model errors have similar variance/spread (Figure

F.2b). Interestingly, the posterior distribution of the slope parameter (σ0) governing

residual heteroscedasticity showed the greatest density for values less than 0. We ex-

pected that σ0 would converge to a value greater than 0 because we were modeling a

mean estimate of sap velocity from the instrumented trees; error standard deviations

would be expected to increase as a function of v̄s,n due to greater variability between

trees at higher sap flows. Conversely, low v̄s,n (i.e., morning or evening sap flow)

would correspond with decreased error standard deviations. Our σ0 parameterization

dictated the opposite.

The ML parameter estimates were able to closely replicate the observations of

lodgepole pine v̄s,n for the calibration period (RMSE = 0.0874). The model fit was

poorer for the validation period (RMSE = 0.1233), but still closely replicated the v̄s,n

observations. This result was somewhat surprising, as the validation data were differ-

ent both spatially and temporally from the calibration data. Ignoring the magnitude

of v̄s, the response of v̄s,n to meteorological drivers at the validation site was similar to

calibration. High/maximum values of v̄s,n corresponded with comparable values of air

temperature, VPD, and θv to calibration. The response of v̄s,n to decreasing θv into

the late growing season is uncertain, but we might expect a different response given

the difference in soil properties between calibration and validation sites (e.g., sandy

loam versus loam textural classes and differences in soil organic matter content). The

shortened validation period also may have impacted the data normalization based on

the average of the 99.5th percentile sap velocity values from each tree. It is possi-

ble that the validation period failed to capture maximum sap velocity for the entire

growing season, as data were not retrievable after July 6th. A lower normalization
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constant would result in artificially high v̄s,n values and likely poorer model perfor-

mance. This might also explain the less severe, negative PBIAS for the validation

period compared to calibration.

The model tended to under-predict observations of lodgepole pine v̄s,n for both

the calibration and validation periods, as indicated by the negative PBIAS (Table

5.7). Under-predictions were especially prevalent for mid-day v̄s,n observations, cor-

responding with daily peaks (Figure 5.8 and 5.10). This concurs with other studies

using a similar MJS adaptation (e.g., Wang et al., 2016, 2020). These studies at-

tribute the underestimation to model structural deficiencies. For example, Wang

et al. (2020) pointed out the failure of MJS models to simulate the full range of sap

flow observations due to the inability of the environmental stress functions to equal

1 at the same time. One apparent structural deficiency in our model was the VPD

stress function that did not reach maximum v̄s,n over the observed domain of VPD

values (Figure 5.7b).

Lastly, the parameter and total predictive uncertainty intervals generated for the

calibration and validation periods provides insight as to why including an uncertainty

analysis in a MJS model context is beneficial. As communicated in Figure 5.10 and

5.11, parameter uncertainty was small relative to total predictive uncertainty. This

result suggests that consideration of parameter uncertainty alone in MJS models is

insufficient. Undoubtedly, MJS models feature a myriad of uncertainties stemming

primarily from a coarse-grained understanding of the relationship between environ-

mental stressors and the tree physiology controlling water use. There is also incom-

plete knowledge of the spatial and temporal variability of the environmental input

data and tree sap flow response. Our total uncertainty assessment is an attempt to

account for such uncertainties and to combat the simplifications made by the MJS

model in representing lodgepole pine water use. The total uncertainty intervals for

the calibration and validation periods seem reasonable, as they enveloped close to
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the theoretically expected 95% of total v̄s,n observations (Figure 5.11). The 81.8%

bracketing of total validation observations is noteworthy because the validation data

differed in space and time from calibration. What is more, the total uncertainty en-

velopes captured the majority of midday v̄s,n observations for both periods that were

systematically underestimated by our model formulation. Together, the aforemen-

tioned results indicate the potential of an uncertainty assessment based on MCMC,

Bayesian statistics, and a generalized likelihood function for MJS models.

6.4 Assessment of Lodgepole Pine Transpiration Estimates

6.4.1 Simple scaling

The stratified random sampling (STRS) design employed by this study allowed

estimation of lodgepole pine transpiration on a per plot basis for two partitions of

the meadow. This was an important consideration for two main reasons. First, the

eastern and western regions of RCM differed in their lodgepole pine stem density and

sapwood basal area (Table 5.3). The number of trees and sapwood area per plot were

the exclusive spatial covariates in the simple scaling approach, so it was important to

show how this difference factored into the transpiration estimates for the two strata.

Second, we were limited with sap flow equipment. Given our inability to instrument

trees in western RCM for the main study period (pre-meadow restoration, coincident

with SFP measurements), we acknowledge that the per-plot transpiration estimates

for this region are likely less accurate relative to eastern RCM. The STRS design

provided the utility of being able to separate our higher confidence transpiration

estimate for eastern RCM from that of western RCM. This was preferable compared

to providing solely an unnuanced estimate for the entire meadow.

We believe the eastern stratum per-plot lodgepole pine transpiration estimates

are more accurate than the western stratum estimates by considering the literature
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about transpiration heterogeneity. Many studies cite inter-tree variation in sap flow

measurements as a major source of transpiration spatial and temporal variation, with

modulators including micro-meteorology, stand structure, topography, and soil mois-

ture conditions (e.g., Adelman et al., 2008; Berry et al., 2017; Looker et al., 2018;

Kumagai et al., 2005a; Loranty et al., 2008; Moore et al., 2004; Tromp-van Meerveld

and McDonnell, 2006). The potential of soil moisture and vs spatial autocorrelation

is worthy of consideration at RCM because of the discrepancy in soil water between

meadow sections, especially in the late growing seasons when we observed earlier soil

drying in eastern RCM compared to western RCM (Figure 5.2). Ideally vs would have

been measured in multiple plots in both meadow sections per the recommendations

of existing sap flow scaling logic research (Kume et al., 2010; Mackay et al., 2010).

Given measurements were only made in the SFP, we cannot definitively rule in or out

the potential for spatial and temporal variability in lodgepole pine vs both inter and

intra-strata. We figure higher accuracy in the eastern stratum per-plot lodgepole pine

transpiration estimate by nature of the SFP’s location in this meadow region. This

implies greater homogeneity between the v̄s derived in the SFP and actual v̄s in the

eastern stratum random plots, relative to the same parameter estimate comparison

made for the SFP and western plots.

The results of the comparison between simple scaling transpiration and MODIS

ET suggest that our lodgepole pine transpiration estimates are of a reasonable mag-

nitude. Namely the 8-day transpiration composites generated by the three vs radial

profiles for the eastern stratum were generally lower than their MODIS ET counter-

parts for the entirety of the campaign (Figure 5.15 and 5.16). This result is expected

because the sap flow derived estimate is only for lodgepole pine transpiration. The

estimate neglects transpiration from other tree and plant species in the meadow, as

well as the soil and canopy evaporation ET partitions considered by the MOD16A2

algorithm (Running et al., 2019b). The 8-day composite residuals were closest to
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zero for the eastern stratum during fall 2019 and late summer 2020 (Figure 5.16b).

This similarity is likely explained by the dry soils and lack of wet canopy surface

during these periods. In contrast, larger positive residuals correspond with the win-

ter and spring months when soil and canopy evaporation is expected to comprise a

substantial amount of the upward water flux. Consideration of soil evaporation likely

explains the discrepancy in the observed timing in peak MODIS ET and sap flow

derived lodgepole pine transpiration during the 2020 growing season. The onset of

θv and GWD decline in the meadow, indicating increased soil evaporation processes,

corresponded temporally with the largest MODIS ET composite for May 24 through

31, 2020 (Figure 5.2 and 5.15).

Contrary to the expectation that lodgepole pine transpiration would be consis-

tently lower than MODIS ET, we calculated negative 8-day composite residuals for

the western stratum (Figure 5.16c). The negative residuals occurred during late sum-

mer 2019, fall 2019, and summer 2020, and were especially pronounced for the fp,1(r)

transpiration estimate. On one hand, this disagreement might be due to inaccuracy

in the lodgepole pine transpiration estimate for the western stratum, consequence of

its derivation from sap flow measurements made in eastern RCM. However, the tran-

spiration estimates computed from the fp,2(r) and fp,3(r) radial profiles were more

comparable to the MODIS ET (i.e., less negative residuals than fp,1(r)). We would

expect lodgepole pine transpiration to comprise a larger proportion of the ET flux

in western RCM relative to eastern RCM given the high density and sapwood area

of lodgepole pine trees, coupled with more ample soil water in this meadow region

(Figure 5.2; Table 5.2 and 5.3). This emphasizes that the fp,1(r) radial profile likely

overestimates lodgepole pine transpiration in assuming a constant sap velocity across

the sapwood radial profile. Past research has shown evidence that conifers, includ-

ing lodgepole pine, generally exhibit a decrease in vs magnitude with sapwood depth

(Berdanier et al., 2016; Ford et al., 2004; Mark and Crews, 1973).
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On the other hand, the MODIS ET composites for the meadow strata may be

inaccurate due to product pixel coarseness and/or limitations of the MOD16A2 al-

gorithm for our study area. Figure 5.16 suggests the former, as the MODIS ET

composites are similar among the east stratum, west stratum, and RCM. Notably,

the MOD16A2 estimates are slightly larger for the eastern stratum compared to the

western stratum, whereas we would expect the opposite to be true. This similarity

is due to the MOD16A2 pixel spatial distribution and size. Unfortunately, the pixels

overlapping RCM are not independent for the two stratum and also capture adjacent

forested areas outside the meadow boundary (Figure B.2). Regarding the accuracy

of the MODIS estimate, past studies have compared MODIS ET product estimates

to ET informed by flux tower measurements in similar environments to RCM (Jepsen

et al., 2021; Vinukollu et al., 2011). Jepsen et al. (2021) found that monthly flux

tower measurements in the southern Sierra Nevada (CA, USA) were consistently un-

derestimated by the MOD16A2 ET product. Comparisons were carried out for wet

and dry years at lower (1160 m), middle (2015 m), and upper (2700 m) elevation sites

dominated by conifer species, including lodgepole pine at the upper site. The work

attributed large underestimations of warm-season ET to the MOD16A2 algorithm

imposing an over-excessive VPD limitation on canopy conductance for the study site;

the algorithm accounts for water stress on transpiration using VPD (Running et al.,

2019b). The findings of Jepsen et al. (2021) suggest that the MODIS ET estimate

for our study site may be lower than the true ET, especially for the growing season

months in the western stratum.

Further putting our simple scaling lodgepole pine transpiration estimates into

context is a comparison to transpiration estimates made for lodgepole pine/other

conifers in other studies. We feel our eastern stratum transpiration estimates are best

juxtaposed with growing season sap flow observations made in forested environments

under comparable hydrologic conditions. One example is Pataki et al. (2000), who
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estimated an average transpiration rate of 2.7 ± 0.6 mm/d for pine-fir dominated

plots (including Pinus contorta ssp. latifolia) during a dry growing season in the

Medicine Bow Mountains (WY, USA). Our eastern stratum transpiration estimates

for summer 2020 provide a good point of comparison because they are part of a

monitored dry growing season, aligning with the June to August time period analyzed

in the referenced study. We estimated average daily lodgepole pine transpiration for

eastern plots between 0.60 ± 0.08 and 1.06 ± 0.14 mm/d given by fp,3(r) and fp,1(r)

respectively (Figure 5.14a and Table E.1). Two reasons related to sap flow scaling

may explain why our estimates are on the lower end. First, our estimates do not sum

transpiration from non-lodgepole pine tree species, which comprised on average 6.5%

of the total stem density and 29.6% of the total basal area per hectare in the eastern

stratum (Table 5.3). Secondly, our eastern stratum lodgepole pine sapwood area to

ground area ratio (i.e., sapwood basal area) of 10.77 ± 0.84 cm2 m-2 is much lower

than the 48.8 ± 15 cm2 m-2 reported for pine-fir plots by Pataki et al. (2000). We

note that the higher standard error in the per plot estimates of Pataki et al. (2000)

is consequence of the small plot size used in their study. In another work conducted

by Spittlehouse (2002) at Upper Penticton Creek (British Columbia, Canada), old

growth lodgepole pine transpiration was estimated by sap flow between 1 and 1.5

mm/d during mid-summer. The transpiration rate decreased to 0.5 mm/d in late

August and September when soil moisture dropped below -0.5 MPa in a sandy loam

soil. These values are similar in magnitude to the eastern stratum estimates given

by fp,1(r) and fp,2(r) during summer 2020, that dropped significantly with decreases

in θv deeper into the growing season (Figure 5.14a). As previously stated (Section

3.4), eastern RCM featured soil with a sandy loam textural class. We compare the

upper end estimates given by fp,1(r) and fp,2(r) because Spittlehouse (2002) did not

account for sap flow decline with sapwood depth in their scaling approach.
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Lastly, we contrast our simple scaling lodgepole pine transpiration estimates made

for RCM (strata aggregate mean) to ET estimates for similarly degraded mountain

meadow environments. Hammersmark et al. (2008) estimated the annual ET in a

channel-incised meadow (near Redding, CA, USA) between 530 and 419 mm using a

MIKE SHE hydrologic modeling system. Although the primary degradation mecha-

nism for this meadow was not conifer encroachment, the meadow featured pine and

ash forest that was factored into the ET computation. Our lodgepole pine transpira-

tion for RCM over the approximate 1-year monitoring period was estimated between

220.57 ± 25.28 mm and 393.39 ± 45.65 mm, given by fp,3(r) and fp,1(r) respectively.

In a more comparable study, Surfleet et al. (2020) estimated soil ET for Marian

Meadow (near Chester, CA, USA) prior to restoration by lodgepole pine removal.

Marian Meadow and RCM had comparable basal areas prior to restoration, 25.04

versus 29.54 m2 ha-1 respectively. Soil ET was estimated as 285 and 268 mm for

two pre-restoration water years at Marian Meadow, with the first estimate derived

from a dry water year. Both rates are bracketed by our upper and lower lodgepole

pine transpiration estimates for RCM. As previously discussed, we reason that the

lodgepole pine transpiration would be on the lower end of this range, given knowledge

about the vs radial profile for this tree species.

6.4.2 MJS informed scaling

The results of the MJS informed scaling and comparison to the simple scaling

approach highlight some of the benefits and limitations of using the calibrated model

to estimate lodgepole pine transpiration at RCM. The inclusion of θv as another

covariate is the clear benefit of our employed model scaling, at least in principle. Soil

moisture conditions were spatially and temporally variable throughout RCM during

the 2020 growing season, as measured by the four instrument set-ups (Figure 5.2a-b).

The benefit of including θv in a scaling approach compared to the simple scaling is
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apparent for the RCSM5 plot estimate. RCSM5 showed ample soil moisture into the

late growing season, so that soil moisture conditions were perceived as unlimited to

lodgepole pine transpiration by the model (Figure 5.2b and 5.17d). The MJS model

validation for v̄s,n data in western RCM supports this, as observations of high v̄s,n

were maintained with observations of high θv (Figure 5.9d). Therefore, the simple

scaling logic likely produces an inaccurately low transpiration for the late-growing

season in the RCSM5 plot.

In contrast to RCSM5, the RCSM1 and RCSM3 set-ups recorded θv values com-

mensurate with lodgepole pine transpiration soil moisture limitation perceived by the

calibrated model during the growing season. This contributed to lower predicted tran-

spiration in these plots compared to the simple scaling, especially after θv dropped

below 18.4% (Figure 5.17b-c). The rate of decline in predicted transpiration was

especially steep after this threshold. This observation illuminates the poor constrain-

ing of the ks parameter in our calibrated model; both RCSM1 and RCSM3 recorded

θv values lower than what was observed in the SFP during the calibration period.

We would have higher confidence in the predicted transpiration in plots RCSM1 and

RCSM3 had the MJS model been calibrated using the full range of θv observations

in all soil moisture monitored plots. Also, as discussed previously, our MJS model

validation exercise was limited because we did not record any θv values coincident

with the vs decline observed during model calibration. This has greater bearing on

the MJS derived transpiration estimates in RCSM3, as this plot was located in west-

ern RCM. There is uncertainty, therefore, if the lodgepole pine in this plot would

respond consistently with the SFP to declines in θv. Overall, these results emphasize

the need to calibrate the model for a longer period of time and a deficiency created

by model calibration at one meadow location.

Apart from the aforementioned limitations associated with the soil moisture stress

function, there are several other model deficiencies that limit the MJS informed scaling
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at RCM. Firstly, the approach requires knowledge about average maximum sap

velocity for lodgepole pine. Our model formulation used the average of the 99.5th

percentile vs values from the instrumented SFP trees, but other studies using a MJS

scheme also rely on an observed maximum v̄s or transpiration rate for a given tree

species (e.g., Link et al., 2014; Wang et al., 2020). Others allow this maximum to be

parameterized in the model (e.g., Guyot et al., 2017; Wang et al., 2016; Whitley et al.,

2009, 2013). In the model-based scaling, it is assumed that the derived maximum v̄s

is spatially universal for RCM during the 2020 growing season. This is an unlikely

assumption, especially for extrapolation to western RCM given the soil moisture

discrepancy in this meadow region. Secondly, the MJS model used in this study

is not able to simulate nocturnal sap velocity, as is the case with most MJS models

(Wang et al., 2020). Our data show nocturnal vs was present during the 2020 growing

season (Table 5.4).

Finally, the comparison between the MJS informed and simple scaling lodgepole

pine transpiration estimates for the SFP suggest the model-based scaling approach in

this study has potential application in a mountain meadow site water balance (Fig-

ure 5.17a). Given the evaluated time period in this study, we limit the suggestion to

growing seasons. The simple scaling based transpiration estimates derived from the

fp,1(r), fp,2(r), and fp,3(r) radial profiles were only under-estimated by 6.11%, 5.61%,

and 4.92% respectively by the model (Table 5.11). The magnitude of underestimation

is comparable with the results of Wang et al. (2016), who found similar underestima-

tion for an hourly MJS model based transpiration estimate. Our suggestion based on

the SFP’s MJS informed estimate, however, implies that a site water balance would

be best constructed if the model were calibrated using sap flow data from multiple

locales within a given site. In light of the limitations discussed above, the model

calibration need consider the full range of measured θv, intra-meadow variation in
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maximum v̄s, and magnitude of nocturnal sap flow, all in context of the evaluated

time period.

6.5 Additional Limitations and Uncertainties

6.5.1 Sap flow measurement limitations

There are several limitations in the sap flow measurements in this study that

warrant discussion: (1) tree wound response, (2) assumptions about sapwood traits,

(3) chosen sizes/number of instrumented trees, and (4) treatment of sap velocity

(vs) as proportional to transpiration. Each of these limitations contributes potential

uncertainty to the meadow transpiration estimates.

During the SFP campaign, the sap flow probes were not re-installed, which risks

artificially low heat velocity (vh) measurements due to the tree wounding response

(Barrett et al., 1995). We corrected our vh measurements over the course of the

campaign using two sets of the published wound correction coefficients from Burgess

et al. (2001); it appeared the wounding process was dynamic over time, with wounding

worsening between summer/fall 2019 and spring 2020. Because we measured the

wound diameter at the end of the campaign (average wound of 2.4 ± 0.3 mm), we

have higher confidence in the wound correction applied to the later data collected

between April 1 and August 16, 2020. There is higher uncertainty in the wound

correction applied between July 2019 and April 1, 2020, which was based off a 1.9

mm wound diameter according to the anatomical investigations by Barrett et al.

(1995). Overall, heat pulse based sap flow methods, such as the heat ratio method

(HRM) in this study, lack a robust methodology to dynamically correct against tree

wound response errors, as opposed to some thermal dissipation based methods (Peters

et al., 2018).
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We made assumptions about lodgepole pine sapwood traits including sapwood

moisture content (mc), sapwood depth (Ds), and the radial profile of sap velocity

(vs) that introduce uncertainty into our transpiration estimates. In converting our

corrected heat velocity (vc) measurements to vs, we assumed that mc was constant

throughout the measurement period; however, there is evidence this parameter is

seasonably variable in lodgepole pine (Markstrom and Hann, 1972). We used an av-

erage mc from measurements made in a dry season (August 2020) and wet season

(May 2021), so that the parameter would represent an intermediate value. Looking

at Equation 4.2, this assumption might result in slight underestimation of vs during

the wet season and a slight overestimation during the dry season. Sapwood moisture

content was also used in the calculation of thermal diffusivity (α), alongside other

parameters related to fresh sapwood that would also vary seasonally given their re-

lation to sapwood water content (Equation 4.6-4.8). With regards to Ds, using a

regression-based Ds estimate to integrate vs across the sapwood can cause significant

error (Kumagai et al., 2005b; Looker et al., 2016). This is a possibility in this study

because the singularly sampled sapwood cores that inform our relationship neglect

Ds variability around the tree bole. This potential error is not factored into our tran-

spiration estimates. Lastly, of the aforementioned sapwood trait assumptions, the

uncertainty surrounding the assumed vs radial profile is the only one we attempt to

quantify through our fp,1(r), fp,2(r), and fp,3(r) profiles.

The size of instrumented trees (10-40 cm) were chosen in the SFP to span a wide

range of DBH, as is the approach in many studies (Oren et al., 1998b). The number of

selected larger DBH trees was disproportionate to the number of smaller DBH trees

when considering the diameter distribution was positively skewed in the meadow,

especially for the eastern stratum plots (Figure 5.3). Studies on sap flow scaling have

advocated that the selection of instrumented trees consider not just the range of tree

size in an area of interest, but also the distribution (i.e., DBH spatial arrangement

140



and moments) (e.g., Köstner et al., 1998; Kumagai et al., 2008; Mackay et al., 2010;

Tromp-van Meerveld and McDonnell, 2006). Our lack of vs measurements in small

trees (DBH < 10 cm) might mean that the derived average sap velocity (v̄s) was

not completely representative of the trees contained in RCM; however, there was

limitation from the start with only eight available sap flow probes. At the same time,

we did not perceive any relationship between DBH and magnitude of vs as documented

in some studies (e.g., Berry et al., 2017; Jung et al., 2011; Kume et al., 2010; Meinzer

et al., 2005). The highest magnitude (active depth) measurements collected in each

tree showed strong positive correlation with each other throughout the SFP campaign

(Appendix Figure E.3). It is possible that some kind of relationship between vs and

DBH exists for the lodgepole pine at RCM, but thorough exploration of this is limited

by the sample size.

The number of available probes also restricted careful consideration for azimuthal

variation in vs around the tree bole with our probe installation (Shinohara et al.,

2013; Tateishi et al., 2008; Tsuruta et al., 2010). We chose to allocate our available

probes between trees, as to capture inter-tree variations in vs. A study by Shinohara

et al. (2013) suggested inter-tree variation was more important in minimizing sap flow

scaling error relative to azimuthal variation.

Finally, by treating vs as proportional to transpiration we neglect potential tem-

poral heterogeneity in the assumed vs radial profile and changes in water storage

between the probe location and canopy. Ford et al. (2004) found non-constant radial

profiles in Pinus spp. trees for sub-daily time frames, which suggests our assumption

of a temporally constant profile for lodgepole pine is a simplification. Neglecting the

contribution of water storage, including sap flow lags along the tree height, likely also

introduces error to our transpiration estimates (Čermák et al., 2007; Kumagai et al.,

2009; Loustau et al., 1996; Waring and Running, 1978). The error associated with

this assumption, however, can be less extreme for daily estimations of transpiration
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compared to sub-diurnal estimations in certain tree types that have small amounts of

daily stem water change. For example, Waring and Running (1978) showed less than

5% daily water storage change in Douglas-fir. Moreover, previous results for conifer

trees have evidenced that stored water typically comprises < 30% of daily transpira-

tion, including large trees (Phillips et al., 2003). It has also been shown in sap flow

scaling applications that water storage error is negligible if inter-tree vs variability is

low (Loustau et al., 1996).

6.5.2 Other environmental measurements/data limitations

In addition to the limitations in sap flow measurements for this study, there were

limitations associated with soil moisture and climate data. The volumetric soil water

content (θv) input data for the MJS model was based off the average from two time

domain reflectometry (TDR) sensors at 45 cm depth. We acknowledge that these

point measurements imperfectly represent the available water to the instrumented

SFP lodgepole pine. Overall, the location of the lodgepole pine roots in the SFP

were uncertain, but our results from the ERT surveys suggest tree induced soil water

depletion between 0 and 3 m depth (Figure G.1, G.2, and G.3). Whether the tree

roots depleted water from these depths directly or via an induced upward water

potential gradient is uncertain. Prior sap flow studies on Pinus contorta ssp. latifolia

have assumed or stated shallow rooting, < 1 m (Pataki et al., 2000; Spittlehouse,

2002). The calibrated model may have performed better had we included deeper θv

data, especially because the model was calibrated during a dry growing season with

an antecedent dry winter. Guyot et al. (2017) showed evidence supporting this for a

subtropical coastal conifer forest (South-East Queensland, Australia) that featured a

shallow unconfined aquifer system. Apart from model analyses, inclusion of deeper

θv data would have allowed us to comment further on the discrepancy in observed v̄s

between the 2019 and 2020 partial growing seasons.
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The climate data used in this study was retrieved from one climate station located

in the SFP. The station provided the meteorologic input data for MJS model cali-

bration; however, using data from the same location to preform model validation and

the model informed transpiration scaling neglects potential heterogeneous meteorol-

ogy in the meadow. Still, the MJS model validation showed comparable responses to

climate drivers relative to calibration, suggesting that severe micro-meteorology was

not present at the validation site (Figure 5.8 and 5.9a-c).

6.6 Improvements and Future Work

The primary limitation surrounding lodgepole pine transpiration estimation in

this study was the lack of sap flow measurement in the western portion of RCM.

This required extrapolation of v̄s from the SFP in order to complete both simple scal-

ing and MJS model informed lodgepole pine transpiration estimation. The structural

bias would have been mitigated in this study had we used a multiple sap flow plot

design, as to capture a more representative tree size distribution and potential v̄s

heterogeneity between meadow strata. Using multiple probes per tree, as opposed to

one per tree, would also contribute to a more robust v̄s estimate in individual plots.

In addition to more sap flow measurements (i.e., plots), inclusion of spatially corre-

sponding micro-meteorological and soil moisture measurements would allow multiple

MJS model calibrations and an assessment of the intra-meadow variation in lodge-

pole pine v̄s response to model environmental drivers. The multi-plot approach would

mold well into the STRS design implemented in this study and extend uncertainty

assessments surrounding transpiration estimates beyond the variability we presently

assess (i.e., variability associated with stem density, sapwood area, and three variants

of a v̄s radial profile). More work could also be done to reflect the error in sapwood
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traits in estimating transpiration as per the recommendations of other authors (e.g.,

Looker et al., 2016).

Future work is also recommended to focus on the continued use of DREAM(ZS)

and the GL function in parameterizing MJS models and assessing model parameter

and total uncertainty. As shown in the results of this study, the GL function approach

has potential in a MJS model context, especially for uncertainty assessments. Some

questions still remain, however, surrounding the GL error model implemented in this

work. Namely, there was difficulty in completely removing residual autocorrelation

given the high temporal resolution of our response variable. We also obtained residual

heteroscedasticity parameters within the error model that were non-conducive to

increasing error in v̄s with increasing v̄s magnitude. More work could be done to

investigate and potentially resolve these components of the error model, perhaps

by using different representations for the non-constant variance and correlated error

components. Future work could also propagate parameter and total uncertainty into

MJS informed transpiration estimates and explore the use of this methodology to

parameterize models at different temporal scales (Wang et al., 2016). Regarding the

latter, it would be useful to calibrate a MJS model using data collected during a wet

growing season with an antecedent wet winter, as to compare parameter values to

those from the dry growing season in this study.
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CHAPTER 7: CONCLUSION

The replacement of mountain meadow vegetation by conifer forest is a well doc-

umented phenomenon contributing to meadow degradation in the western USA. Al-

though past research has focused on conifer removal as a restoration technique, there

has been little work done to assess conifer water use in these environments in a

pre-restoration state. The results of this study contribute information about Pinus

contorta ssp. murrayana, lodgepole pine, transpiration in a mountain meadow envi-

ronment. As meadows in the southern Cascades and the Sierra Nevada are commonly

encroached by this conifer species, this work contributes valuable knowledge about

the water consumption and environmental drivers of lodgepole pine transpiration,

particularly in dry growing seasons. Knowledge of lodgepole pine water consumption

is useful to meadow restoration efforts where the common objective is the recovery

of herbaceous meadow vegetation that rely on ample soil water availability. Infor-

mation about the environmental drivers of water use during dry growing seasons is

important because of the expected changes in climate that will favor these condi-

tions in the future. In addition, the applied sap flow scaling and modeling methods

in this study contribute information about transpiration quantification techniques in

mountain meadows and similar environments.

The primary goal of this study was to estimate lodgepole pine transpiration in

Rock Creek Meadow (RCM) for an approximate 1-year period intersecting the 2019

and 2020 partial meadow growing seasons. In recognition of the spatial heterogeneity

of the lodgepole pine at the meadow and other environmental factors that can po-

tentially influence transpiration, we employed a stratified random sampling (STRS)

design in a simple, bottom-up sap flow scaling approach. The sampling and scaling

approach allowed separate per-plot total and daily average transpiration estimates for
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the eastern stratum, western stratum, and RCM (i.e., meadow population estimate).

Average total transpiration for random plots in the eastern stratum (drier, less veg-

etated portion of meadow) was estimated by the simple scaling approach between

149.74 ± 12.06 and 266.05 ± 20.81 mm for the monitoring period (mid-July 2019

to mid-August 2020). The lower end of this estimation was produced assuming that

the radial profile of sap velocity (vs) declined linearly across tree sapwood to zero at

the heartwood-sapwood boundary (fp,1(r)), while the upper end assumed constant

vs across tree sapwood (fp,3(r)). The eastern RCM per-plot estimate for the 2020

partial growing season (April to mid-August 2020) was given as 67.82 ± 5.46 and

120.50 ± 9.43 mm by the same two radial profiles. The random plots in the west-

ern stratum (wetter, more vegetated portion of meadow) approximately doubled the

eastern stratum estimate for these periods, between 288.64 ± 54.71 mm and 515.72

± 98.96 mm for the entire campaign and between 130.73 ± 24.78 and 233.58 ± 44.82

mm for the 2020 partial growing season. Lastly, average total transpiration for the

entire meadow was estimated between 220.57 ± 25.28 and 393.39 ± 45.65 mm for the

campaign and between 100.22 ± 11.49 and 178.75 ± 20.74 mm for the 2020 partial

growing season. Provided the previously discussed limitations imposed by our scaling

approach and the location of sap flow measurement in eastern RCM, we are most

confident in the eastern stratum transpiration estimates. Furthermore, we expect

that the true lodgepole pine transpiration is on the lower end of the vs radial profile

intervals because of the evidence of a sap flow radial gradient in lodgepole pine trees

(Berdanier et al., 2016; Ford et al., 2004; Mark and Crews, 1973).

Although we are most confident in the eastern stratum transpiration estimates,

the analysis comparing lodgepole pine transpiration estimates to moderate resolution

imaging spectroradiometer (MODIS) derived evapotranspiration (ET) (MOD16A2GF

product) revealed that the magnitude and timing of the estimated transpiration for

each meadow partition is reasonable. The comparisons revealed mainly positive resid-

146



uals between MODIS ET and lodgepole pine transpiration, with the magnitude resid-

uals increasing seasonally during periods when tree transpiration would comprise a

low percentage of the ET flux (e.g, winter and early spring). Some negative residuals

were produced in the comparison for western RCM, especially during the late growing

seasons, suggesting disagreement with the MODIS product and potential inaccuracy

in the estimated transpiration for this region. At the same time, we acknowledge the

potential deficiencies in the MOD16A2 product for estimating ET at locations like

RCM (Vinukollu et al., 2011; Jepsen et al., 2021).

The second half of the goal for this study was to investigate environmental drivers

of lodgepole pine transpiration for a dry growing season. To do so, a modified Jarvis-

Stewart (MJS) model was calibrated and validated to hourly normalized average sap

velocity (v̄s,n) data collected in two different parts of the meadow during the 2020 and

2021 partial growing seasons. Both the 2020 and 2021 growing seasons were dry, with

antecedent winters witnessing below average precipitation. The model was calibrated

using a variation of the DiffeRential Evolution Adaptive Metropolis (DREAM) algo-

rithm known as DREAM(ZS) and a generalized likelihood (GL) function in an attempt

to heed error residual assumptions and complete a thorough uncertainty assessment.

To the author’s knowledge this is the first attempt to parameterize a MJS model

using DREAM(ZS) and a GL function.

Model calibration showed good agreement between observed and predicted v̄s,n

using the maximum likelihood parameter estimates (ML) (RMSE = 0.0874, 1.25 cm

h-1 after removing normalization constant), but also featured negative PBIAS. The

results of these model performance metrics are comparable with other works employ-

ing a MJS model. The diurnal variation in incoming solar radiation, air temperature,

and VPD modulated lodgepole pine v̄s,n early in the growing season, until a perceived

soil moisture limitation corresponding with approximate decreases in volumetric soil

water content (θv) from 0.23 and 0.17 at 45 cm soil depth between late June and mid-
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August. Near-maximum v̄s,n corresponded with VPD > 3.5 kPa and air temperature

> 30°C, when 45 cm θv exceeded the 0.23 threshold. Comparable model performance

was achieved for the validation period using the ML parameter estimates gathered

in calibration (RMSE = 0.1233, 2.05 cm h-1 after removing normalization constant)

and negative PBIAS. High v̄s,n at the validation site corresponded with similar air

temperature, VPD, and θv conditions observed for calibration. The similar model per-

formance between calibration and validation suggests that the lodgepole pine in the

two meadow regions respond similarly to meteorological drivers during dry growing

seasons; however, the soil moisture response cannot be compared because the range

of θv associated with v̄s,n decline was not observed during the validation period.

Overall, the modeling analysis suggests that future warmer and drier growing

seasons in this region may present more occurrences of limited lodgepole pine water

consumption, especially in the late growing season. This study, however, was limited

in a few aspects that prohibited rigorous exploration of certain hydrologic and climatic

characteristics that may influence lodgepole pine transpiration in mountain meadows

within the context of a changing climate. First, the analysis in our study did not allow

us to decipher the relative effects of model parameters (i.e., environmental drivers)

on predicted sap flow over the course of the growing season. A sensitivity coefficient

analysis would allow this. This would be especially useful toward disentangling the

effects of climatic variables on tree water use in the early growing season when soil

water is non-limiting, which is relevant with anticipated shifts in energy inputs with

climate change. Second, no formal analysis was done to assess late growing season

rainfall effects on lodgepole pine transpiration due to the lack of precipitation events

in the late 2020 growing season. Outside of the modeled period, we observed several

rainfall events that augmented shallow soil moisture and subsequently lodgepole pine

transpiration in fall 2019. This warrants further investigation given increasingly vari-

able precipitation with climate change in the western USA, including high intensity
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summer rain events. Lastly, expanding beyond the scope of a single growing season,

this study showed a dichotomy in the magnitude of lodgepole pine v̄s between the

2019 and 2020 growing seasons, seemingly attributable to differences in winter pre-

cipitation between years. This observation invites more work focused on inter-annual

variability in lodgepole pine transpiration, as inter-annual variation in precipitation

is also expected with changing climate in this region.

The total predictive uncertainty 95% confidence interval determined from the GL

error model bracketed close to theoretically expected 95% of total v̄s,n observations

for both calibration and validation periods. This was an encouraging result when

considering the prevalent structural deficiencies of MJS models, especially a tendency

for predicted values to underestimate observed values during times of high sap flow

(i.e., midday). Overall, this first application of the GL function and total uncertainty

assessment methodology shows potential for future use with MJS models, at least for

the growing season period explored in this work.

Lastly, the calibrated MJS model was used to inform transpiration scaling for the

2020 partial growing season and compared to the simple scaling estimates in select

plots. The comparisons revealed the potential utility the MJS scaling provides by

including θv as another v̄s covariate. We were limited in this exercise, however, by

the poor constraining of the soil moisture function parameter in the model describing

the decline rate of sap flow decline with limiting soil moisture conditions (ks). The

comparison for the SFP suggests the model-based approach has potential for appli-

cation in a mountain meadow site water balance, at least for a growing season. As

discussed, however, a implementation would need to ensure the calibrated model con-

siders the the diversity of θv in the meadow and intra-meadow variation in maximum

sap flow. Therefore, it is recommended that the model be calibrated over a sufficient

time period and/or multiple locales within a study site.
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The conclusions presented herein were based on the results of a two year study at

Rock Creek Meadow. Subsequent work will integrate the lodgepole pine transpiration

estimates derived from simple scaling into a pre-restoration water budget. Future

work and research could include: (1) expansion of the sampling design to capture

intra-meadow variability in lodgepole pine sap flow and response to environmental

drivers, (2) further implementation of DREAM(ZS) and a GL function to parameterize

and quantify uncertainty in Jarvis-type transpiration (and stomatal conductance)

models, and (3) additional evaluation of lodgepole pine sap flow and response to

environmental drivers, during both dry and wet years.
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Köstner, B., Granier, A., Cermák, J., 1998. Sapflow measurements in forest stands:

methods and uncertainties. Annales des sciences forestières 55, 13–27. doi: 10.

1051/forest:19980102.

Kumagai, T., Aoki, S., Nagasawa, H., Mabuchi, T., Kubota, K., Inoue, S., Utsumi,

Y., Otsuki, K., 2005a. Effects of tree-to-tree and radial variations on sap flow

estimates of transpiration in Japanese cedar. Agricultural and Forest Meteorology

135, 110–116. doi: 10.1016/j.agrformet.2005.11.007.

Kumagai, T., Aoki, S., Otsuki, K., Utsumi, Y., 2009. Impact of stem water storage

on diurnal estimates of whole-tree transpiration and canopy conductance from sap

flow measurements in japanese cedar and japanese cypress trees. Hydrological

Processes: An International Journal 23, 2335–2344.

Kumagai, T., Nagasawa, H., Mabuchi, T., Ohsaki, S., Kubota, K., Kogi, K., Utsumi,

Y., Koga, S., Otsuki, K., 2005b. Sources of error in estimating stand transpiration

160

10.1098/rstb.1976.0035
10.1098/rstb.1976.0035
10.3390/rs13071258
10.1007/s11258-010-9829-3
10.1051/forest:19980102
10.1051/forest:19980102
10.1016/j.agrformet.2005.11.007


using allometric relationships between stem diameter and sapwood area for Cryp-

tomeria japonica and Chamaecyparis obtusa. Forest Ecology and Management 206,

191–195. doi: 10.1016/j.foreco.2004.10.066.

Kumagai, T., Tateishi, M., Shimizu, T., Otsuki, K., 2008. Transpiration and canopy

conductance at two slope positions in a Japanese cedar forest watershed. Agricul-

tural and Forest Meteorology 148, 1444–1455. doi: 10.1016/j.agrformet.2008.04.

010.

Kume, T., Tsuruta, K., Komatsu, H., Kumagai, T., Higashi, N., Shinohara, Y.,

Otsuki, K., 2010. Effects of sample size on sap flux-based stand-scale transpiration

estimates. Tree Physiology 30, 129–138. doi: 10.1093/treephys/tpp074.

Laloy, E., Vrugt, J.A., 2012. High-dimensional posterior exploration of hydrologic

models using multiple-try DREAM (ZS) and high-performance computing. Water

Resources Research 48. doi: 10.1029/2011WR010608.

Lang, N.L., Halpern, C.B., 2007. The soil seed bank of a montane meadow: con-

sequences of conifer encroachment and implications for restoration. Botany 85,

557–569. doi: 10.1139/B07-051.

Larsen, E.K., Palau, J.L., Valiente, J.A., Chirino, E., Bellot, J., 2020. Long-term

probe misalignment and proposed quality control using the heat pulse method for

transpiration estimations. Hydrology and Earth System Sciences 24, 2755–2767.

doi: 10.5194/hess-24-2755-2020.

Lesh, M.W., 2010. Evaluation of lodgepole pine tree removal on the storage poten-

tial of a shallow aquifer in a Sierra Nevada mountain meadow. Master’s thesis.

California State University Sacramento. Sacramento, CA, USA.

Lindquist, S., Wilcox, J., 2000. New concepts for meadow restoration in the northern

Sierra Nevada. Feather River Coordinated Resource Management Group.

161

10.1016/j.foreco.2004.10.066
10.1016/j.agrformet.2008.04.010
10.1016/j.agrformet.2008.04.010
10.1093/treephys/tpp074
10.1029/2011WR010608
10.1139/B07-051
10.5194/hess-24-2755-2020


Link, P., Simonin, K., Maness, H., Oshun, J., Dawson, T., Fung, I., 2014. Species

differences in the seasonality of evergreen tree transpiration in a Mediterranean

climate: analysis of multiyear, half-hourly sap flow observations. Water Resources

Research 50, 1869–1894. doi: 10.1002/2013WR014023.

Litvak, M.E., Schwinning, S., Heilman, J.L., 2010. Woody plant rooting depth and

ecosystem function of savannas: a case study from the Edwards Plateau Karst,

Texas, in: Hill, M., Hanan, N. (Eds.), Ecosystem Function in Global Savannas:

Measurement and Modeling at Landscape to Global Scales. CRC Press, Boca Ra-

ton, FL, USA, pp. 117–134.

Liu, X., Biondi, F., 2020. Transpiration drivers of high-elevation five-needle pines

(Pinus longaeva and Pinus flexilis) in sky-island ecosystems of the North American

Great Basin. Science of The Total Environment 739, 139861. doi: 10.1016/j.

scitotenv.2020.139861.

Lohammar, T., Larsson, S., Linder, S., Falk, S., 1980. FAST: Simulation models of

gaseous exchange in Scots pine. Ecological Bulletins , 505–523.

Loheide, S.P., Butler Jr, J.J., Gorelick, S.M., 2005. Estimation of groundwa-

ter consumption by phreatophytes using diurnal water table fluctuations: a

saturated-unsaturated flow assessment. Water Resources Research 41, 1–14. doi:

10.1029/2005WR003942.

Loheide, S.P., Deitchman, R.S., Cooper, D.J., Wolf, E.C., Hammersmark, C.T.,

Lundquist, J.D., 2009. A framework for understanding the hydroecology of im-

pacted wet meadows in the Sierra Nevada and Cascade Ranges, California, USA.

Hydrogeology Journal 17, 229–246. doi: 10.1007/s10040-008-0380-4.

162

10.1002/2013WR014023
10.1016/j.scitotenv.2020.139861
10.1016/j.scitotenv.2020.139861
10.1029/2005WR003942
10.1007/s10040-008-0380-4


Loheide, S.P., Gorelick, S.M., 2007. Riparian hydroecology: a coupled model of the

observed interactions between groundwater flow and meadow vegetation patterning.

Water Resources Research 43. doi: 10.1029/2006WR005233.

Loheide II, S.P., Gorelick, S.M., 2005. A local-scale, high-resolution evapotranspi-

ration mapping algorithm (ETMA) with hydroecological applications at riparian

meadow restoration sites. Remote Sensing of Environment 98, 182–200. doi:

10.1016/j.rse.2005.07.003.

Looker, N., Martin, J., Hoylman, Z., Jencso, K., Hu, J., 2018. Diurnal and seasonal

coupling of conifer sap flow and vapour pressure deficit across topoclimatic gradi-

ents in a subalpine catchment. Ecohydrology 11, e1994. doi: 10.1002/eco.1994.

Looker, N., Martin, J., Jencso, K., Hu, J., 2016. Contribution of sapwood traits to un-

certainty in conifer sap flow as estimated with the heat-ratio method. Agricultural

and Forest Meteorology 223, 60–71. doi: 10.1016/j.agrformet.2016.03.014.
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APPENDIX A: ROCK CREEK MEADOW PLANT SPECIES LIST

Table A.1: Rock Creek Meadow plant species list adapted from Collins Almanor

Forest Timber Harvest Plan by surveyors: K. Bovee and B. Johnson.

RCM Timber Harvest Plan Plant Survey

Trees: Abies concolor Pinus contorta ssp. murrayana

Pinus lambertiana Populus trichocarpa

Pinus jeffreyi Populus tremuloides

Shrubs: Alnus incana ssp. tenuifolia Amelanchier utahensis

Arctostaphylos nevadensis Arctostaphylos patula

Ceanothus cordulatus Ceanothus integerrimus

Ceanothus prostratus Ceanothus velutinus

Chrysolepis sempervirens Cornus sericea

Ericameria bloomeri Prunus virginiana

Ribes roezlii Rosa californica

Rubus parviflorus Salix lasiandra

Salix lemmonii Spiraea douglasii

Symphoricarpos mollis

Graminoids: Agrostis pallens Anthoxanthum aristatum

Bromus carinatus Bromus racemosus

Carex athrostachya Carex davyi

Carex douglasii Carex fracta

Carex integra Carex lenticularis var. impressa

Carex leporinella Carex nebrascensis

Carex pellita Carex subfusca

Carex whitneyi Cyperus squarrosus

Dactylis glomerata Danthonia californica
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Table A.1 continued from previous page

RCM Timber Harvest Plan Plant Survey

Deschampsia cespitosa Deschampsia danthanioides

Eleocharis macrostachya Elymus elymoides

Festuca idahoensis Hordeum brachyantherum

Juncus acuminatus Juncus balticus

Juncus bufonius Juncus nevadensis

Luzula comosa Melica subulata

Muhlenbergia filiformis Poa palustris

Poa pratensis Poa secunda

Stipa occidentalis

Forbs: Achillea millefolium Mentha arvensis

Aquifolium repens Microsteris gracilis

Aquilegia formosa Mimulus primuloides

Arnica nevadensis Monardella odoratissima

Barbarea orthocera Navarretia intertexta ssp. intertexta

Bistorta bistortoides Navarretia sinistra

Calochortus nudus Osmorhiza berteroi

Calyptridium umbellatum Packera pauciflora

Calystegia occidentalis Paeonia brownii

Camassia quamash Pedicularis densiflora

Castilleja applegatei Penstemon deustus

Castilleja lacera Penstemon heterodoxus var. shastensis

Castilleja tenuis Penstemon neotericus

Centaurea diffusa Penstemon rydbergii

Chamaesaracha nana Phleum pratense

Chimaphila menziesii Plagiobothrys (cognatus)

Cirsium andersonii Plantago major
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Table A.1 continued from previous page

RCM Timber Harvest Plan Plant Survey

Cirsium scariosum Platanthera dilatata var. leucostachys

Cirsium vulgare Polygonum sawatchense

Clarkia sp. Potentilla gracilis

Claytonia rubra Potentilla millefolium

Collomia grandiflora Poteridium annuum

Collomia tinctoria Prunella vulgaris

Crepis modocensis Pterospora andromedea

Cryptantha intermedia Pyrola picta

Cynoglossum occidentale Ranunculus aquatilis

Dieteria canescens Ranunculus occidentalis

Elytrigia repens Ranunculus orthorhynchus

Epilobium brachycarpum Rumex acetosella

Epilobium pallidum Sarcodes sanguinea

Equisetum arvense Senecio aronicoides

Erigeron eatonii Senecio triangularis

Erigeron inornatus var. calidipetris Sidalcea glaucescens

Erigeron inornatus var. inornatus Sidalcea oregana

Eriogonum nudum Silene lemmonii

Fragaria vesca Sisyrinchium idahoense

Galium aparine Solidago lepida var. salebrosa

Galium (boreale) Stachys rigida ssp. rigida

Gayophytum diffusum Stellaria longipes

Geum macrophyllum Stephanomeria lactucina

Gnaphalium palustre Symphyotrichum spathulatum

Hackelia californica Taraxacum officinale

Heterocodon rariflorum Taraxia tanacetifolia
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Table A.1 continued from previous page

RCM Timber Harvest Plan Plant Survey

Hieracium albiflorum Thalictrum fendleri

Horkelia fusca Tragopogon dubius

Hosackia oblongifolia Trifolium longipes ssp. hansenii

Hypericum anagalloides Trifolium productum

Hypericum perforatum Triteleia hyacinthina

Hypericum scouleri Veratrum californicum

Kelloggia galioides Verbascum thapsus

Lactuca serriola Veronica peregrina ssp. xalapensis

Leucanthemum vulgare Vicia americana

Ligusticum grayi Viola sp.

Lilium pardalinum

Lupinus lepidus var. sellulus

Lupinus polyphyllus var. burkei

Maianthemum racemosum

Maianthemum stellatum
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APPENDIX B: SUPPLEMENTAL MAPS
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Figure B.1: RCM instrumented study area including the 25 m x 25 m SFP and
random survey plots part of the stratified random sampling design overlaid on site
aerial imagery (pre-restored meadow).
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Figure B.2: RCM with overlapping MODIS Global Terrestrial ET Product pixels.
The aerial imagery reflects post-restoration meadow conditions.
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APPENDIX C: BARK AND SAPWOOD DEPTH SLR DIAGNOSTICS
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Figure C.1: Diagnostic plots for simple linear regression (SLR) assumptions- natural
log sapwood depth (Ds) versus natural log diameter at breast height (DBH).
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Figure C.2: Diagnostic plots for simple linear regression (SLR) assumptions- bark
depth (Db) versus diameter at breast height (DBH).
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APPENDIX D: DIXIE FIRE SAP FLOW VALIDATION SITE DAMAGE

(a)

(b)

Figure D.1: Damage to the model validation sap flow site consequence of the Dixie
Fire: (a) select instrumented trees and (b) sap flow enclosure/hardware.
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APPENDIX E: SAP VELOCITY/SAP FLOW SUPPLEMENT
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Figure E.1: 30-minute sap velocity (vs) measurements for the sap flow plot (SFP)
lodgepole pine (LP). Measurements were taken from each tree’s active depth (sampled
radial depth with the highest magnitude vs): (a) LP1 and LP2 (17.5 mm); (b) LP3
and LP4 (5 mm); (c) LP5 and LP6 (5 mm); (d) LP7 (5 mm) and LP8 (30 mm).
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Figure E.2: Daily volumetric sap flow (Q) estimates for LP2, LP3, LP7, and LP8
given by the fp,1 and fp,3 sap velocity radial profiles over the sap flow plot (SFP)
monitoring period. Note the differences in vertical scale used for the 4 trees.
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Table E.1: Seasonal stratum daily mean transpiration (T) estimates by sap velocity
radial profile. Italicized values represent one standard error of the mean. GS =
growing season.

Season Daily T, mm/d (East) Daily T, mm/d (West)

fp,1(r) fp,2(r) fp,3(r) fprof1(r) fp,2(r) fp,3(r)

Summer 2019† 1.86 1.45 1.04 3.60 2.81 2.02

0.15 0.12 0.09 0.30 0.23 0.17

Fall 2019 0.61 0.48 0.35 1.19 0.93 0.67

0.16 0.13 0.09 0.32 0.25 0.18

Winter 2019† 0.12 0.09 0.07 0.23 0.18 0.13

0.03 0.03 0.02 0.06 0.05 0.03

Spring 2020 0.47 0.36 0.26 0.90 0.70 0.50

0.17 0.13 0.09 0.32 0.25 0.18

Summer 2020† 1.06 0.83 0.60 2.05 1.60 1.15

0.14 0.11 0.08 0.26 0.20 0.15

Partial GS 2020† 0.87 0.68 0.49 1.69 1.32 0.95

0.17 0.13 0.10 0.33 0.26 0.15

†T estimate incomplete for season
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Figure E.3: Pearson correlation coefficients between active depth sap velocity mea-
surements in the eight instrumented lodgepole pine for the SFP monitoring period
(July 20, 2019 - August 17, 2020).
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Table E.2: Seasonal RCM daily mean transpiration (T) estimates by sap velocity
radial profile. Parenthetical values represent one standard error of the mean. GS =
growing season.

Daily T, mm/d

Season fp,1(r) fp,2(r) fp,3(r)

Summer 2019† 2.76 (0.33) 2.15 (0.25) 1.55 (0.18)

Fall 2019 0.91 (0.19) 0.71 (0.15) 0.51 (0.11)

Winter 2019† 0.18 (0.04) 0.14 (0.03) 0.10 (0.02)

Spring 2020 0.69 (0.19) 0.54 (0.14) 0.39 (0.10)

Summer 2020† 1.57 (0.21) 1.22 (0.17) 0.88 (0.12)

Partial GS 2020† 1.30 (0.22) 1.01 (0.17) 0.73 (0.12)

†T estimate incomplete for season
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APPENDIX F: MJS GL-DREAM(ZS) SUPPLEMENT

Figure F.1: (a) Convergence plot of the Gelman and Rubin (1992) R-statistic for the
parameters analyzed in the modified Jarvis-Stewart (MJS) model. (b) Convergence
plot of the multivariate R-statistic (Rd) (Brooks and Gelman, 1998).

191



200 400 600 800 1000 1200 1400 1600
-0.4

-0.2

0

0.2

0.4
(a)

-4

-2

0

2

4

residuals s.p.r.

0.2 0.4 0.6 0.8

-2

0

2

(b)

s.p.r
linear fit

0

0.1

0.2

0.3

0.4

(c)

-2 0 2

s.p.r
likelihood

-0.2

0   

0.2 

0.4 

0.6 

0.8 

1   
(d)

0 10 20 30

s.p.r
95% bounds

Figure F.2: Residual diagnostics for modified Jarvis-Stewart (MJS) calibration pe-
riod, derived from the maximum likelihood parameter estimates (ML): (a) residual/s-
tandardized partial residual (s.p.r) versus observation order, (b) s.p.r versus simulated
(predicted) values, (c) s.p.r density plot, and (d) s.p.r autocorrelation plot.
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APPENDIX G: SFP ELECTRICAL RESISTIVITY TOMOGRAPHY SURVEYS

(a) July 2020 (pre meadow restoration)

(b) July 2021 (post meadow restoration)

Resistivity (Ohm*m)

Figure G.1: Comparison of 3-D electrical resistivity tomography surveys for the sap
flow plot (SFP) performed in (a) July 2020 and (b) July 2021. Units for axes are
meters and the horizontal slice shown is at 1 m depth.
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(a) July 2020 (pre meadow restoration)

(b) July 2021 (post meadow restoration)

Resistivity (Ohm*m)

Figure G.2: Comparison of 3-D electrical resistivity tomography surveys for the sap
flow plot (SFP) performed in (a) July 2020 and (b) July 2021. Units for axes are
meters and the horizontal slice shown is at 2 m depth.
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(a) July 2020 (pre meadow restoration)

(b) July 2021 (post meadow restoration)

Resistivity (Ohm*m)

Figure G.3: Comparison of 3-D electrical resistivity tomography surveys for the sap
flow plot (SFP) performed in (a) July 2020 and (b) July 2021. Units for axes are
meters and the horizontal slice shown is at 3 m depth.
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