EMC- 2019-003 Fuel Treatments and Hydrologic Implications in the Sierra Nevada

Kate Boden, Daniel Philippus, Dr. Anneliese Sytsma, Dr. Jake Kurzweil, Dr. Katie Schneider, Katy Smith, Jackie Randell **Dr. Terri S. Hogue** Colorado School of Mines

Dr. Alicia M. Kinoshita San Diego State University

EMC Science Questions

- 1. How will variability in forest treatments affect sub-basin and basin scale discharge?
- 2. What key variables determine hydrologic response to differing mitigation strategies?
- 3. How will downstream aquatic habitat be impacted by upstream forest treatments?
- 4. To what degree does sediment flux vary due to upstream forest mitigations?
- 5. To what degree can remote sensing information quantify treatment impacts on forest structure?
- 6. What key metrics best quantify system change and can be easily integrated into a predictive framework for evaluating habitat and hydrologic response in California watersheds?

Today's Update

1. Research Goals

(primary focus on questions 1, 2, 5 and 6)

- 2. Methods
- 3. Results
- 4. Conclusions
- 5. Deliverables and Outcomes
- 6. Future Work

Research Goals

Using the Sagehen experimental watershed in the Sierra Nevada, we investigated

- 1. The impact of forest treatments on annual runoff (water yield) at various spatial scales
- 2. The impact of forest treatments on annual evapotranspiration (ET) at various spatial scales

Our tools: Field data, remote sensing, and high-resolution modeling

Sagehen Basin- Eastern Sierra Nevada, California

Area: ~30 km²

Average slope: 18%

Average Precipitation: 800 mm

Snowfall: 80% of precipitation

Peak flow: May

Min flow: September

Sagehen vegetation

- 65% of Sagehen covered by vegetation
- 80% of vegetation evergreen forest
- Jeffrey pine and lodgepole pine (lower elevation)
- **Red fir** and white pine (higher elevations)

Treatment areas

Treatment areas

Goal 1 Methods

Investigating the impact of treatment on annual runoff

- 1. Annual water budgets at basin and sub-basin scale
- 2. Linear regression between precipitation and water yield at basin and sub-basin scale

Pre-treatment

Post-treatment

Sagehen Water Budget High variability in P and R, low variability in ET

Sagehen Water Budget Minimal variability in ET even after treatment

\geq 85% of variability in sub-basin runoff predicted by precipitation

Precipitation (mm)

Goal 2 Methods

Investigating the impact of forest treatments on annual ET Pixel scale analysis (100m x 100m)

- 1. Compare change in forest density pixel data to change in ET pixel data between 2018 and 2014
- 2. Group pixels to treated and untreated categories and compare change in forest density to change in ET in both groups
- 3. Run a linear regression analysis to explore the relationship between change in forest density and change in ET

Relative change in forest density between 2014 and 2018 visually similar to relative change in ET

Linear relationship between change in forest density and change in ET within treated pixels

Conclusions from current work

- 1. During the study period annual ET at sub-basin and basin scale was nearly constant despite treatment
- 2. At sub-basin and basin scale precipitation accounts for \geq 85% of water yield variability. There was no measurable increase in water yield due to forest treatment
- At pixel scale forest treatment reduced ET across ~50% of sub-basin SGH 02 but only 10% of the Sagehen watershed. This scale of impact was too small to influence water yield.

Ongoing work: Evaluating the diel (24 hr) cycle

- Goal: use hourly stream stage data to understand watershed scale behavior
- Goal: quantify daily stream stage variability using the Diel Cycle Index and see how climate change may change this metric

Using hourly stream stage data to understand watershed scale behavior

- 1. What can we learn about watershed hydrology by studying the DCI signal?
- 2. How does the DCI signal vary across space?
- 3. How does the DCI signal vary across time?

Ongoing work: High-resolution modeling

- Goal: Model development and parameterization to represent a range of fuel treatment options.
 - How well does this model replicate previous forest treatments?
- Goal: Model the interactions of vegetation with the hydrologic process.
 - How much of the forest do we need to treat to start to see hydrologic change (impact on runoff)?
 - For example, if we applied X% of forest treatment to the basin, how does that impact streamflow?

MIKE SHE Model

- Physics based, 3D, fully distributed modeling framework
- Includes important features for modeling eco-hydrology in high mountain basins:
 - Snow melt/accumulation
 - Subsurface flow processes in both saturated and unsaturated Grou zones
 - Quantitative vegetation representation (LAI, rooting depth)

Conceptual figure taken from the MIKE SHE Manual

Model Setup / Framework

- Frame the model based off the dominant hydrologic processes in the watershed.
- Our focus: the impact of vegetation change on ET and ultimately runoff at the basin and sub-basin scales.

Presentations and Products

Publications

1. Boden, et al. (2022). A multi-scale assessment of forest treatment impacts on evapotranspiration and water yield in the Sierra Nevada. (submission August 2022)

 Boden, et al. (2022) Impact of forest treatment on water yield in a Sierra Nevada watershed. [Master's thesis, Colorado School of Mines]. ProQuest Dissertations Publishing. (in queue for publication)

Conference presentations

- 1. Rocky Mountain Hydrologic Research Center *Fall Meeting*
- 2. American Geological Society- Annual Meeting
- 3. Colorado School of Mines- Thesis Defense
- 4. Colorado State University- Hydrology Days
- 5. University of Colorado- *Hydrology Symposium*
- 6. American Geological Society Annual Meeting

October 2021 December 2021 April 2022 April 2022 May 2022 Dec. 2022 (abstract submitted)

Thank you!

Questions?

Kate Boden <u>kboden@mines.edu</u> Dr. Terri Hogue thogue@mines.edu Dr. Alicia Kinoshita akinoshita@sdsu.edu

MINES.EDU