

Forest Carbon and Climate Program Department of Forestry MICHIGAN STATE UNIVERSITY

Effects of Forest Management & Wood Utilization on Carbon Sequestration & Storage in California

> Kendall DeLyser Director, Climate Science, American Forests

Nadia Tase

Climate Change & Forest Inventory, Fire and Resource Assessment Program , CAL FIRE

> California Board of Forestry and Fire Protection Meeting

> > June 19, 2024

Agenda

- Project background and California context
- Scenario development overview
- Results summary and key takeaways for climate-smart forestry in California

American Forests

Modeling state & regional climate-smart forestry

✓ Partners in 7 US states (MD, PA, MN, MI, WI, OR, & CA)

Objectives:

- Model carbon impacts of forest management and wood utilization scenarios
 - Ecosystem + wood products + substitution (+ economics)
- Understand climate mitigation potential of scenarios & identify climate-smart forestry practices
- Integrate carbon in forest management and planning
- Integrate forests as natural climate solutions in state climate planning and funding

Forest Carbon and Climate Program Department of Forestry MICHIGAN STATE UNIVERSITY

Modeling state & regional climate-smart forestry

California context:

- Task Force Wildfire and Forest • **Resilience** Action Plan
- **One Million Acre Strategy** ۲
- **Reforestation Strategy Working** • Group
- CARB 2022 Scoping Plan Update ٠
- **CNRA 2024 Nature-Based Solutions** • **Climate Targets**

CALIFORNIA WILDFIRE & FOREST RESILIENCE

2022 Scoping Plan for Achieving

Carbon Neutrality

CALIFORNIA

BAU ACTIVITIES & DATA

Scenario data & development

CLIMATE ADJUSTMENTS TO BAU ←

PRODUCTIVITY DECLINES

Climate-Adapted Seed Tool

MORE FREQUENT AND MORE SEVERE NATURAL DISTURBANCE

- Westerling et al. 2018 (4th California Climate Assessment)
- Anderegg et al. 2022

POST-FIRE REGENERATION FAILURE

• Davis et al. 2023

FIRE RESILIENCE NEEDS ASSESSMENT

• Pyrologix wildfire hazard potential 2021 (WHP)

MODELED SCENARIOS

- Business-as-usual (BAU)
- -• Climate-adjusted BAU*^

MANAGEMENT SCENARIOS

- Post-fire landscape restoration*^
- Fire resilience treatments
- Expand fire resilience treatments to mature and old-growth forest*^
- Forest conservation^
- Silvopasture^
- Extended rotations^
- Altered rotations

WOOD UTILIZATION SCENARIOS

- Long-lived wood products*^+
- Transportation fuels*^+
- Biochar*^+

PORTFOLIOS (include marked scenarios)

- *Ramp up implementation
- ^Max NCS action by 2045
- [†]Innovative wood utilization

STARTING INVENTORY & GROWTH DATA

USFS FIA database up through 2021

LAND-USE CHANGE

• NLCD time-series comparison, 2001-2019

FOREST MANAGEMENT (2000-2021)

- USFS activities database (FACTS)
- Timber harvesting plans (THP)
- Non-industrial timber management plans (NITMP)
- VTP treatment polygons
- LANDFIRE Historic Disturbance dataset

NATURAL DISTURBANCE (2000-2021)

- Monitoring Trends in Burn Severity (MTBS)
- USFS Rapid Assessment of Post-Fire Vegetation Condition (RAVG)
- USFS Insect & Disease Surveys (IDS)
- LANDFIRE Historic Disturbance dataset

WOOD UTILIZATION & TRADE (1952-2021)

- University of Montana Bureau of Business and Economic Research (BBER)
- US International Trade Commission
- IPCC/FAO

Fire Resilience Needs Assessment

able 1. Acres in need of fire resilience treatments, separated by ownership and ecoregion.									
	Ownership								T
Ecoregion	USFS	BLM	NPS	Other federal	State/ local	Tribal	Private industrial	Private	l otal Acres
North Coast	7,576	28,151	4,464	677	29,536	6,679	109,836	180,332	367,252
Klamath/Interior Coast Ranges	2,199,309	130,277	258	6,704	26,333	49,510	448,847	816,548	3,677,785
Sierra/Cascades	2,730,737	183,784	207,660	15,255	67,368	13,101	847,648	1,059,147	5,124,701
Eastside	371,568	125,067	-	605	3,390	1,534	72,196	113,632	687,992
Central Coast and Interior Ranges	170,612	40,144	8,300	29,937	58,186	-	1,587	380,593	689,359
Central Valley	-	111	-	10	59	7	-	3,891	4,079
Deserts, South Coast and Mountains	487,733	23,192	415	3,639	44,386	25,947	-	96,596	681,907
Total Acres	5,967,535	530,725	221,097	56,828	229,257	96,778	1,480,115	2,650,739	11,233,075

After applying filters, only **7.3 million acres** of forest are likely to be eligible for resilience treatments; includes pushing slope limits, increasing removal intensity, treating w/in wildlife habitat in some cases.

Treated at a steady rate over 10 years, this equates to an average of **735,000 acres per year**

CALIFORNIA ECOSYSTEM CARBON MODELING SCENARIOS

Scenario	Average Area 2022-2031	Difference from CBAU	Model Change from CBAU
Landscape	246 917 achur	Increase salvage and reforestation within 3-5 years of high- severity fire	+171,961 ac/yr
restoration	240,917 ac/yi	Increase site prep and reforestation rates to address current reforestation needs within 10 years	+134,880 ac/yr from 2022-2031
		Increase hazardous fuels thinning to address current resilience treatment needs within 10 years	+523,438 ac/yr (mechanical thin) from 2022-2031 +65,490 ac/yr (hand thin)
Fire resilience treatments	821,719 ac/yr	Increase prescribed fire to address current resilience treatment needs within 10 years	+229,405 ac/yr (burn only) +54,576 ac/yr (pileburn 5 years after hand thin) +104,689 ac/yr (broadcast burn 10-30 years after mechanical thin)
		Decrease wildfire severity in response to treatments	206,153 ac/yr of high-> moderate severity wildfire 180,043 ac/yr moderate->low severity wildfire
Expand fire resilience to	221 710 achur	Increase resilience in mature stands within 10 years	Increase age cap for resilience mechanical thin to make mature acres eligible (~+99,873 ac/yr eligible)
mature and old- growth forests	821,719 ac/yr	Increase resilience in old-growth stands within 10 years	Remove age cap for hand thin/pile burn to make OG acres eligible (~+72,004 ac/yr eligible)
Forest conservation	13,186 ac/yr	Reduce permanent forest loss rate until equal to forest gain rate in 2045	+2,298 ac/yr additional forest conservation from 2022-2045
Silvopasture	9,512 ac/yr	Increase silvopasture implementation by 2045	+9,512 ac/yr from 2022-2045
Extended Rotations	114,864 ac/yr	Extend rotations on all lands	50 years->80 years minimum harvest age
Altered Rotations	114,864 ac/yr	Extend rotations on public lands, shorten rotations on private lands	50 years->80 years minimum harvest age on public lands 50 years->40 years minimum harvest age on private lands

Potential Wood Utilization Strategies

CALIFORNIA HARVESTED WOOD PRODUCT CARBON MODELING SCENARIOS

Scenario	Difference from CBAU
Create more long-lived wood products	Allocate additional harvested material from resilience thinning eligible for lumber to mass timber
Use woody biomass for transportation fuels	Allocate additional harvested material in slash category from resilience thinning to produce transportation fuels (renewable diesel and aviation gas), after current bioenergy capacity has been fully met
Create more biochar	Allocate additional harvested material in slash category from resilience thinning to create biochar
Innovative wood products	Allocate additional harvested material from resilience thinning into mass timber, transportation fuels, and biochar

- Need alternative use for additional material produced from large-scale resilience treatments (approx. 5x more than CBAU at peak)
- Product categories are representative of various potential wood utilization strategies with different uses and half-lives

CNRA NATURE-BASED SOLUTIONS CLIMATE TARGETS COMPARISON (acres/year)

CNDA Catagony		CNRA Target		CBM Target		
CNKA Category	2030	2038	2045	2030	2038	2045
Afforestation Oak woodland reestablishment 	52,900	52,900	52,900	9,125 (silvopasture)	9,125 (silvopasture)	9,125 (silvopasture)
 Conservation Conserve OG, conserve conifer, riparian, and oak woodland forests 	55,100	55,100	55,100	34,268	8,843	7,466
 Post-high severity fire reforestation and restoration, restore oak woodlands including enhancing riparian zones 	322,100	462,100	322,100	299,321	171,960	171,960
 Beneficial Fire Rx burn, cultural burn, planned managed fire, planned trt burned in wildfire 	800,000	1,200,000	1,500,000	622,539 (309,030 Rx, 313,509 mngd)	718,747 (413,718 Rx, 305,029 mngd)	784,882 (413,718 Rx, 371,164 mngd)
Other Fuel Reduction Activities Thinning, invasive species removal, grazing, mechanical trts, uneven-aged harvest 	700,000	800,000	1,000,000	794,265	270,827	270,827
 Working Forest Conservation Extend rotations, shift intensity of harvest, restore/conserve wildlife habitat 	165,200	165,200	165,200	114,864	114,864	114,864
 Decrease Conversion Decrease illegal conversion and forest degradation by: 	-20%	-50%	-90%	-34%	-65%	-92%
 Shift to Low/Moderate Severity Fire Through beneficial fire and other fuel reduction activities, shift the proportion of statewide high severity wildfire to low or moderate severity wildfire so that: 	75% of wildfire is low/mod severity	83% of wildfire is low/mod severity	90% of wildfire is low/mod severity	82%	82%	82%

Influence of future climate

- An average of **82%** of forest will fail to regenerate after high-severity wildfire
- Significant loss of forest area:
 -48% from 2022-2071
- Decline in carbon stocks:
 -50% from 2022-2071
- Forest ecosystem became a net carbon source in 2015 with high insect mortality events
- Higher carbon emissions:
 +49% over BAU values

Harvest transfers

Influence of forest age

- Future climate drives stand age down with more disturbance and high regeneration failure (stands stay age 0)
- Landscape restoration and resilience treatments help more forest survive, so stand age increases with time

FOREST AGE AND TREATMENT COMPLETION RATE

Ecosystem Scenario	Time Period	Average Forest Age	Treatment Completion
DALL	2022-2031	135	95.56%
DAU	2062-2071	152	95.74%
	2022-2031	132	95.12%
	2062-2071	108	93.87%
Landscapa restaration*A	2022-2031	131	95%
	2062-2071	128	94.65%
Fire resilience treatments	2022-2031	136	95.21%
Fire resilience treatments	2062-2071	144	93.92%
Expand fire resilience to mature	2022-2031	136	95.24%
and old-growth forest*^	2062-2071	144	93.99%
*Domn Un Implomentation	2022-2031	135	94.68%
Kamp op implementation	2062-2071	149	93.68%
ANANY NCS Action by 2045	2022-2031	134	94.53%
MVIAX NCS ACTION by 2045	2062-2071	148	93.14%

Forest ecosystem trends

- Max NCS scenario best conserves overall forest area:
 -8% from 2022-2071 (40% better than CBAU)
- Max NCS scenario minimizes carbon stock losses: -20% from 2022-2071 (30% better than CBAU)
- Ecosystem carbon flux magnitude is driven by decomposition, natural disturbance, and wood product transfers

Harvest transfers

Wood products dynamics

- Wood use drives HWP carbon balance
- Displaced emissions (substitution benefits) contribute +10-66% of HWP net carbon sink
- Product use and halflife impact emissions
- Leakage reduces HWP net carbon sink by 0.3-6%

Net carbon balance

- Net carbon balance is fairly consistent across scenarios, with variability at different times
- Resilience and landscape restoration strategies show higher early removals from treatments
- Scenarios that do not address wildfire impacts have later but more sustained carbon emissions from wildfire and postfire regeneration failure
- Carbon flux is just one metric of forest ecosystem health to consider

Net Carbon Balance = Net Ecosystem Carbon Flux + HWP Transfers + HWP Emissions + Leakage + Substitution Benefits

Climate-smart forestry in California

ual net carbo	n balance/ha rank
2020	
2030s	2050s
4	12
9	7
10	5
11	6
1	8
7	9
3	10
5	11
12	4
8	3
6	2
2	1
	4 9 10 11 7 3 5 5 12 8 6 2

Less carbon CBAU than CBAU More carbon than CBAU

Annual net carbon balance includes net ecosystem sequestration in the forest, transfers to HWP, emissions from wood products in use and in landfills, substitution benefits in years where harvest is different than BAU, and leakage in years where harvest is less than BAU.

Forest Carbon and Climate Program Department of Forestry MICHIGAN STATE UNIVERSITY

Effects of Forest Management & Wood Utilization on Carbon Sequestration & Storage in California

 \bigcirc Major finding:

Climate-smart forestry can increase the net forest carbon sink per hectare by **25%** and overall by **11%** in California by 2045.

Key takeaways

2

3

4

5

- Forests are a net carbon source in the future (consistent with CARB projections).
- Addressing post-fire regen failure is critical to maintain forest area and carbon stocks and decrease future emissions and there is an opportunity to affect future wildfire trends.
- A portfolio of climate-smart strategies leads to smaller forest area and carbon losses, including upfront landscape-scale restoration & wood utilization.
- Stand age increases with restoration actions, including in mature and oldgrowth forest.
- Wood utilization is necessary to increase forest sector sink strength associated with landscape-scale restoration.
- Scale of opportunity and timing of action drive carbon trajectories.

Key areas of uncertainty & gaps

UNCERTAINTY

- Global emissions pathway and future climate conditions
- Treatment effectiveness

American

- Simulation of uneven-aged management dynamics
- Actual extent and impact of future harvest and natural disturbance
- Post-fire regeneration dynamics
- HWP utilization pathways realized
- Leakage/substitution assumptions
- Landfill decomposition assumptions

GAPS

- Structure/composition species preference cutting assumptions, ICO stand structure
- Diameter limits
- Forest type transitions
- Periodic future harvest for maintenance resilience treatments in addition to Rx fire

Next
Steps

- Final written report to be delivered to CALFIRE
- Socio-economic analysis (CALFIRE)
- Peer-reviewed publication(s) to follow
- Additional state outreach and engagement
- Future projects extending from this work?

Kendall DeLyser – Director, Climate Science kdelyser@americanforests.org Nadia Tase – Climate Change & Forest Inventory nadia.tase@fire.ca.gov

Appendix

The CBM-CFS3

Carbon Budget Model of the Canadian Forest Sector Pa wid en fo ar

Parameterized with FIA data to ensure accuracy for US forests and conditions

- Model of forest ecosystem carbon dynamics at various levels: stand \rightarrow operational \rightarrow state \rightarrow regional \rightarrow national
- Links to associated ANSE Framework for Harvested Wood Products, which we use to build custom HWP models
- Model is spatially referenced not tied to specific locations, but can reference types of forest stands using *classifiers* (e.g. forest type, ownership, site class)
- Model is not predictive requires user-determined inputs for future natural disturbance, climate change, etc

Business-as-Usual (BAU)

Land-Use Change

 NLCD time-series comparison, 2001-2019

Current Management Practices

- GIS data from:
 - USFS activities database (FACTS)
 - Timber harvesting plans (THP)
 - Non-industrial timber management plans (NITMP)
 - CAL FIRE Treatment polygons
 - LANDFIRE Historic Disturbance dataset
- Overlay with classifiers to find area by forest type, owner, etc.

lifornia business-as-usual (BAU) parameters (average ha/yr, 2000-2021)								
Event	Practice	Biomass Impact	Total	USFS	Other Federal	State/ Local	Private/ Tribal	
Land-use	Forest loss	-	-24,381	-12,814	-2,437	-286	-8,844	
change	Forest gain	-	2,068	298	51	51	1,669	
	NET TREND	-	-22,314	-12,517	-2,387	-235	-7,175	
Forest anagement	High harvest	90% cut, 85% removed	10,638	1,542	7	5	9,084	
	Intermediate harvest	50% cut <i>,</i> 45% removed	14,399	1,244	18	74	13,064	
	Group selection	50% cut, 45% removed	21,447	452	7	376	20,613	
	Commercial thin	30% cut, 25% removed	16,638	10,566	14	18	6,040	
	Hazardous fuels thin	30% cut, no removal	3,943	2,666	53	135	1,088	
	Precommercial thin	10% cut, no removal	16,032	11,092	7	30	4,093	
	Rx fire	5% burned	10,137	4,909	420	317	2,083	
	Pile burn	50-90% consumption of pile	8,241	-	-	-	-	
	Salvage	90% cut, 90% removed	11,985	1,852	-	4	10,128	
	MANAGEMENT TOTAL	-	113,461	35,133	526	960	66,193	

BAU/CBAU

Natural Disturbances

- Historic data from: ٠
 - Monitoring Trends in Burn Severity (MTBS) ٠
 - **USFS Rapid Assessment of Post-Fire Vegetation Condition** ٠ (RAVG)
 - USFS Insect & Disease Surveys (IDS) ٠
- Future projections from: ٠
 - Westerling et al. 2018 (4th California Climate Assessment; ٠ wildfire projections)
 - Anderegg et al. 2022 (insect/disease, abiotic projections) ٠

Additional CBAU assumptions

- Future productivity: average -27.34% from 2020-2100 (Climate-٠ Adapted Seed Tool)
- Post-fire regeneration: average 82.2% acres will fail to regenerate ٠ after high-severity fire (Davis et al. 2023)

Natural Disturbance (annual average ha/yr, 2022-2071)								
Parame	ter	BAU	CBAU	Difference				
	High Severity	57,805	151,685	87,416				
Wildfire	Moderate Severity	55,759	143,298	79,898				
	Low Severity	69,700	69,699	-				
	High, Mort	1,965	3,544	1,471				
	Mod, Mort	318,398	584,282	255,006				
Incosts	Low, Mort	76,982	134,387	55,350				
IIISECIS	High, Defol	3,405	3,404	-				
	Mod, Defol	643	643	-				
	Low, Defol	6,078	6,078	-				
	High, Mort	39	38	-				
	Mod, Mort	18,024	22,919	4,863				
Disassa	Low, Mort	1,892	1,823	(69)				
Disease	High, No Mort	1,863	1,863	-				
	Mod, No Mort	2,115	2,115	-				
	Low, No Mort	4,423		-				
	High, Mort	406	474	48				
	Mod, Mort	3,952	4,157	183				
Abiotics	Low, Mort	12	13	-				
Ablotics	High, No Mort	3,545	3,545	-				
	Mod, No Mort	731	731	-				
	Low, No Mort	3,127	3,127	-				

CALIFORNIA EXPANDED FIRE RESILIENCE TREATMENT PARAMETERS (1 of 2)

Forest Type Group	Ownership	Ecoregion	Slope Class	Stand Age	Productivity	Reserve Status	Critical Habitat Status	Thinning	Rx Fire
			All	All	All	Reserve	All	-	Every 20 years
			0.40%	<189 years (CMC) <180 years (DF) <142 years (PP)	Productive	Not reserve	All	Mechanical thin (40% biomass cut, 35% removed)	Follow up every 15 years
	USFS, Other Federal,	All	0-49%	<256 years (CMC) <260 years (DF) <200 years (PP)	Not Productive	Not reserve	All	Mechanical thin (40% biomass cut, 35% removed)	Follow up every 15 years
California mixed	State/Local		50-69%	<189 years (CMC) <180 years (DF) <142 years (PP)	Productive	Not reserve	All	Hand thin (5% biomass cut); repeat on 15-year cycle	Follow up pile burn 5 years later; repeat on 15-year cycle
conifer, Douglas-fir, Ponderosa pine			30 03 /0	<256years (CMC) <260 years (DF) <200 years (PP)	Not Productive	Not reserve	All	Hand thin (5% biomass cut); repeat on 15-year cycle	Follow up pile burn 5 years later; repeat on 15-year cycle
	NPS	All	All	All	All	All	All	-	Every 20 years
	Private, Private industrial	ate All	0.49%	<189 years (CMC) <180 years (DF) <142 years (PP)	Productive	All	All	Mechanical thin (40% biomass reduction)	Follow up every 15 years
			0-4378	<256years (CMC) <260 years (DF) <200 years (PP)	Not Productive	All	All	Mechanical thin (40% biomass reduction)	Follow up every 15 years
			50-69%	All	All	All	All	-	-
	All	All	All	All	All	All	Critical habitat	-	-
	USFS,		0-49%	All	All	Reserve	Not critical habitat	-	Every 10 years
	Other Federal, State/Local,	All	0-49%	All	All	Not reserve	Not critical habitat	Mechanical thin (20% biomass cut, 15% removed)	Follow up every 10 years
Western oak (Oak woodlands)	Tribal		50-69%	All	All	Not reserve	Not critical habitat	-	-
	NDC	٨	0-49%	All	All	All	Not critical habitat	-	Every 10 years
	INPS	All	50-69%	All	All	All	Not critical habitat	-	-
	Private, Private industrial	All	All	All	All	All	Not critical habitat	-	-

CALIFORNIA EXPANDED FIRE RESILIENCE TREATMENT PARAMETERS (2 of 2) Critical Habitat Forest Type Group Ecoregion Stand Age Productivity Reserve Status Thinning Ownership Slope Class Status All All All Critical habitat -

		North Coost	0.40%	<150 years	Productive	All	Not critical habitat	Mechanical thin (40% biomass cut, 35% removed)	Follow up every 30 years
Redwood (Coast Redwood)	All	Central Coast &	0-49%	<200 years	Not Productive	All	Not critical habitat	Mechanical thin (40% biomass cut, 35% removed)	Follow up every 30 years
		interior nanges	50.60%	<150 years	Productive	All	Not critical habitat	-	Every 30 years
			50-0578	<200 years	Not Productive	All	Not critical habitat	-	Every 30 years
Redwood		Sierra/Cascades,	All	All	All	All	Critical habitat	-	-
(Giant Sequoia)	All	Coast Ranges	All	All	All	All	Not critical habitat	-	Every 30 years
	All	All	All	All	All	Critical habitat	-		
Fir/spruce/mtn	USFS,		All	All	All	Reserve	Not critical habitat	-	-
pine, Western white pine pine Other federa State/local Tribal, Private, Priva	Other federal, State/local,	her federal, State/local, All Tribal, All vate, Private industrial	All 0.40%	<150 years <151 years (FSM)	Productive	Not reserve	Not critical habitat	Mechanical thin (40% biomass cut, 35% removed)	
	Tribal, Private, Private		All 0-49%	0-49%	<200 years <247 years (FSM)	Not Productive	Not reserve	Not critical habitat	Mechanical thin (40% biomass cut, 35% removed)
	industrial		50-69%	All		Not reserve	Not critical habitat	-	-
Pinyon/juniper,		A 11		All	All	All	Critical habitat	-	-
Tanoak/laurel	All	All	All	All	All	All	Not critical habitat	Hand thin (5% biomass cut); repeat on 15-year cycle	Follow up pile burn 5 years later; repeat on 15-year cycle
Hemlock/Sitka						All	Critical habitat	-	-
Western SW, Elm/ash/ cottonwood, Aspen/birch, Other HW, Woodland HW	All	All	All	All	All	All	Not critical habitat	-	-

Rx Fire

-

Scenario combos and abbreviations

- Scenarios in **green** use current HWP assumptions only
- Scenarios in brown include innovative wood product(s) use
- Scenarios marked with * are part of the Ramp Up portfolio
- Scenarios marked with ^ are part of the Max NCS Action portfolio

California ecosystem + HWP carbon modeling scenarios

Abbreviation	Ecosystem Scenario	HWP Scenario
LR	Landscape restoration*^	BAU
FR		BAU
FR Biochar	Fire resilience treatments	Biochar
FR Transport	Fire resilience treatments	Transportation Fuels
FR MT		Mass Timber
MR		BAU
MR Biochar	Expand fire resilience to mature and	Biochar
MR Transport	old-growth forest*^	Transportation Fuels
MR MT		Mass Timber
FC	Forest conservation^	BAU
SV	Silvopasture^	BAU
ER	Extended Rotations^	BAU
AR	Altered Rotations	BAU
RU	Ramp Up Implementation	BAU
RU Products	(* scenarios)	Product Trifecta
NCS	Max Natural Climate Solutions Action by 2045	BAU
NCS Products	(^ scenarios)	Product Trifecta

Carbon Modeling Portfolios

- All alternative scenarios on previous slide are run alone
- Create portfolios to represent simultaneous and comprehensive state action on climate-smart forestry

California ecosystem and wood product carbon modeling portfolios

American Forests[®]

Portfolio	Component scenarios	
Ramp Up Implementation	Ecosystem	CBAU* + Landscape restoration + Expanded fire resilience to include mature and old-growth
	Wood Products	Biochar + transportation fuels + long-lived products
Max Natural Climate Solutions Action by 2045	Ecosystem	CBAU* + Landscape restoration + Expanded fire resilience to include mature and old-growth + Forest conservation + Silvopasture + Extended rotations
	Wood Products	Biochar + transportation fuels + long-lived products

* Includes CBAU management and natural disturbances not affected by other component scenarios

