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Mountainous headwater streams make up ~80 % of stream length globally and are
strongly connected with catchment hillslopes and riparian areas, which can influence
water quantity, quality, and availability for downstream uses. Accordingly, effective
management of headwater streams and riparian zones to maintain desired ecosystem
services downstream is critical, particularly in the face of warming climates. Often, a
central focus is the protection of stream temperature, which is a critical water quality
parameter that influences thermally sensitive species such as salmonid fishes. However,
headwater stream temperatures vary depending on characteristics of the stream,
catchment, and region. For instance, watershed lithology may control the thermal
properties of streamflow during summer baseflow conditions. In addition, there have
been few attempts to assess what meteorological or topographic factors control stream
temperature change during storm events in forested watersheds and how this response
changes seasonally. The goal of this thesis was to improve our understanding of
headwater streams by using distributed stream and air temperature monitoring to assess
regional differences in summer longitudinal stream temperatures and to determine the
factors that influence stream temperature change during storm events in Northern

California.

In chapter 2, I collected stream and air temperature data along eight headwater
streams in two regions (three in the Cascade Range and five in the Coast Range of

Northern California) with distinct lithology, climate, and riparian vegetation. My



objectives were to compare stream thermal regimes and thermal sensitivity—slope of the
linear regression relationship between daily stream and air temperature—within and
between streams in both study regions. Mean daily stream temperatures were ~4.7 °C
warmer in the Coast Range but were less variable (SD = 0.7 °C) compared to the Cascade
Range (SD = 2.3 °C). Median thermal sensitivity was 0.33 °C °C™! in the Coast Range
and 0.23 °C °C! in the Cascade Range. I posit that the volcanic lithology underlying the
Cascade streams likely supported discrete groundwater discharge locations, which
dampened thermal sensitivity. At locations of apparent groundwater discharge in these
streams, median stream temperatures rapidly decreased by 2.0 °C, 3.6 °C, and 7.0 °C
relative to adjacent locations, approximately 70-90 meters upstream. In contrast, thin
friable soils in the Coast Range likely contributed baseflow from shallow subsurface
sources, which was more sensitive to air temperature fluctuations and generally warmed
downstream (up to 2.1 °C km™). Overall, my study revealed distinct longitudinal thermal
regimes in streams draining contrasting lithology, suggesting that streams in these

different regions may respond differentially to forest disturbances or climate change.

In chapter 3, my objective was to use hysteresis metrics to assess the relationship
between stream temperature and stormflow across ten forested headwater catchments in
the Northern California Coast Range during the 2020 water year. I quantified the
magnitude and variability of stream temperature hysteresis during rain events and
determined whether catchment topographic metrics could explain the stream temperature
response to precipitation inputs. [ hypothesized that the direction of hysteresis would vary
across seasons due to changes in meteorological conditions and that the stream locations
most hydrologically connected to the hillslope (as predicted by topographic indices)
would exhibit the greatest hysteresis due to lateral throughflow inputs. My results
indicate that the stream temperature response to stormflow is seasonally variable and
generally exhibits clockwise hysteresis during the summer and spring when air
temperatures are warmer than stream temperatures and anti-clockwise hysteresis during
the fall and winter when air temperatures are cooler than stream temperatures. In
addition, the stream temperature response to stormflow was the most variable across

these 10 catchments during the late summer and early fall (SD = 0.18 and 0.10,



respectively), when catchment-scale wetness conditions and streamflow were low. As the
wet season progressed, stream temperature behavior across these 10 catchments became
more similar, and remained coupled through the late spring (SD = 0.04). The magnitude
and direction of stream temperature hysteresis was well correlated with the gradient
between stream and air temperatures at the start of the event (p = 0.49), and air
temperature change during the storm hydrograph rising limb (o = -0.49), indicating the
potential role of regional meteorological conditions on stream temperature change.
Contrary to my expectations, none of the derived topographic metrics describing the
preponderance of saturated areas and lateral inputs to streamflow were correlated with
stream temperature change during events, potentially because subsurface topography and
seasonally variable catchment wetness conditions could not be properly characterized
with static metrics describing surface topography. Overall, these results indicate
seasonally variable stream temperature behavior during storm events that become
regionally synchronous as catchment moisture conditions increase during the wet season.
Collectively, these results indicate that headwater stream thermal regimes are
spatiotemporally variable across regions and in response to precipitation inputs, and
riparian management should reflect this variable behavior. Using these results to inform
headwater stream management can potentially be accomplished by developing
regionally-specific riparian buffers that provide additional protection at locations most
sensitive to atmospheric energy exchange or along areas with discrete groundwater

discharge.
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Chapter 1: Introduction

Mountainous headwater streams are ubiquitous hydrologic systems that define the
uppermost drainages of a watershed. These generally small channels are estimated to
drain 70-80 % of catchment area (MacDonald & Coe, 2007; Sidle et al., 2000) and make
up about 80 % of total stream length globally (Gomi, Sidle, & Richardon, 2002; Shreve,
1969). Headwater streams are also often strongly connected with the catchments
hillslopes and riparian areas (Freeman, Pringle, & Jackson, 2007; Schlosser, 1991), which
can influence their sensitivity to fluxes of energy, nutrients, and sediment (Coats &
Jackson, 2020; Kiffney, Richardson, & Bull, 2003; Leach, Olson, Anderson, & Eskelson,
2016). As such, headwater streams can have substantial influence on the water quantity,
quality, and availability for downstream uses (Bernhardt et al., 2018; MacDonald & Coe,
2007; Olson, Anderson, Frissell, Welsh, & Bradford, 2007; Richardson, 2019; Vannote,
Minshall, Cummins, Sedell, & Cushing, 1980). In addition, headwater streams provide
vital aquatic and terrestrial habitat for environmentally sensitive species (Brewitt,
Danner, & Moore, 2017; Hester & Doyle, 2011; Johnson, Haas, & Fritz, 2010; Olson et
al., 2007), as they generally transport cool, highly oxygenated water (Isaak, Luce,
Chandler, Horan, & Wollrab, 2018; Maheu, Poff, & St-Hilaire, 2016), provide humid and
cool air temperatures (Brosofske, Chen, Naiman, & Franklin, 1997; Rykken, Chan, &
Moldenke, 2007), and possess topographic and geomorphic diversity that offers niche
habitat availability (Dugdale, Bergeron, & St-Hilaire, 2015; Olson et al., 2007; Steel,
Beechie, Torgersen, & Fullerton, 2017).

Recent research indicates the potential for headwater-riparian corridors to act as
climate refuges (Isaak et al., 2016; Krosby, Theobald, Norheim, & McRae, 2018;
O’Briain, Shephard, & Coghlan, 2017) by providing stable terrestrial and aquatic habitat.
Given the projected effects of climate change on summer low flows (Vander Vorste,
Obedzinski, Nossaman Pierce, Carlson, & Grantham, 2020), stream and air temperatures
(Arismendi, Safeeq, Johnson, Dunham, & Haggerty, 2013; Lisi, Schindler, Cline,
Scheuerell, & Walsh, 2015), and habitat provision (MacDonald, Boon, Byrne, Robinson,

& Rasmussen, 2014b) it is increasingly critical to improve our understanding of how



headwater streams function (Lowe & Likens, 2005) so they can be appropriately

managed.

The exact definition of a headwater stream varies by jurisdiction and scope of
inference, but for the purpose of this thesis, we have defined them as fishless
mountainous streams that generally have active channel widths less than three meters
(Richardson, 2019; Richardson & Danehy, 2007). This definition does not provide a
context for the temporal or spatial extent of surface flow in the channel, which is
commonly used to characterize different types of headwater channels (Fritz et al., 2020).
Accordingly, headwater streams can perennially exhibit surface flow year-round,
intermittently flow through the wet season and dry out seasonally, or ephemerally flow
only in response to storm events and during the wettest portions of the year (MacDonald

& Coe, 2007; Pate, Segura, & Bladon, 2020; van Meerveld et al., 2020).

Regardless of flow duration, headwater channels have historically received less
protection than their larger, downstream, fish-bearing counterparts (Olson et al., 2007;
Richardson, Naiman, & Bisson, 2012). This protection is commonly applied by limiting
activities such as forest harvesting within a certain distance from the channel by
implementing riparian buffers. These strips of retained vegetation along one or both sides
of a stream are designed to moderate stream and air temperatures, recruit large wood,
input organic matter, minimize erosion and mass sediment movement, and maintain cool
and moist aquatic and terrestrial habitat (Richardson et al., 2012; Sweeney & Newbold,
2014). However, the historical lack of riparian protection along headwater channels is
somewhat at odds with current research signifying the importance of headwaters on water
quality and habitat in downstream fish-bearing streams (e.g., Ebersole, Wigington,
Leibowitz, Comeleo, & Van Sickle, 2015; MacDonald & Coe, 2007; Wipfli, Richardson,
& Naiman, 2007). For this reason, riparian buffer requirements for non-fish bearing
headwater streams have become increasingly rigorous across the West of the US to
protect downstream aquatic habitat (Groom, Madsen, Jones, & Giovanini, 2018; Kibler,
Skaugset, Ganio, & Huso, 2013; Pollock, Beechie, Liermann, & Bigley, 2009; Reiter,
Bilby, Beech, & Heffner, 2015), and they continue to change. In California, for example,

federal listing of endangered anadromous fish has led to regulations that limit forest



harvesting within the riparian zone of non-fish bearing streams that are greater than 1.5
meters wide (CAL FIRE, 2020). Therefore, additional research is needed to further
understand how we can best manage these critical aquatic resources and preserve water

quality as regulations change.

One of the key water quality parameters influenced by riparian areas in forested
headwater streams is stream temperature. This key physical water quality parameter
drives dissolved oxygen solubility (Loperfido, Just, & Schnoor, 2009; Ozaki et al., 2003),
nutrient transformations (Morin, Lamoureux, & Busnarda, 1999; Neres-Lima et al.,
2017), in-stream primary productivity (Bernhardt et al., 2018), habitat provision (Brewitt
et al., 2017), and important life history events for sensitive aquatic species such as

salmonids (Caissie, 2006; Hester & Doyle, 2011; MacDonald et al., 2014b).

Stream temperature in headwater streams may be influenced by the rate and
magnitude of energy exchange between the water column, atmosphere, and subsurface
(Brown, 1969; Webb, Hannah, Moore, Brown, & Nobilis, 2008). The total energy flux to
a stream 1is the sum of radiative, sensible and latent, advective, convective, and
conductive heat exchange (Moore, Spittlehouse, & Story, 2005a). Shortwave radiation
generally represents the largest and most dominant energy flux to the water surface that
controls stream temperature change (Guenther, 2007; Hannah, Malcolm, Soulsby, &
Youngson, 2008; Leach & Moore, 2010; MacDonald, Boon, & Byrne, 2014a; Moore et
al., 2005a; Roon, Dunham, & Groom, 2021). Longwave radiation, or the thermal energy
emitted by riparian vegetation, the atmosphere, and stream banks, commonly provides a
relatively small portion of the incoming radiation at a stream surface (Klos & Link,
2018). Incident radiation can be absorbed or released by the water column and adds heat
to the water surface during the day when the air is warmer than the stream. Alternatively,

heat is generally lost from the stream during the night when air is cooler than the stream.

Sensible heat exchanges can represent heat gained or lost, either through turbulent
exchange (heat gained) or convection (heat gained or lost depending on temperature
gradient) with air above the stream. Latent heat exchange refers to heat lost from the
stream through evaporative cooling or added to the stream via condensation of gaseous

water onto the stream surface. The magnitude of sensible and latent heat exchange relies



on the temperature gradient between the stream and air above the stream, as well as wind
speed. However, wind speeds along forested riparian corridors are typically low. Thus,
the magnitude of sensible and latent heat exchange is typically less than 10 % of radiative
energy inputs, and tend to cancel out during summer (Johnson, 2004; Leach & Moore,

2010).

Conductive and advective heat exchange includes groundwater inflow, lateral
throughflow from adjacent hillslopes, hyporheic exchange, and bed heat conduction, and
represent important heat exchange processes governing stream temperature change in
headwaters during both summer and winter (Caissie, 2006; Leach & Moore, 2015). Heat
exchange between the water column and the stream bed is driven by the temperature
gradient between the two, the thermal conductivity of the stream bed substrates, and the
hydraulic gradient between the streambed and subsurface (Guenther, Gomi, & Moore,
2014). Thermally stable groundwater or hyporheic upwelling inputs cool water to the
stream in the summer and comparatively warmer water to the stream in the winter
(Kelleher et al., 2012). Similarly, heat can be conducted from the water column to the
stream bed during summer, but solar radiation inputs may warm the stream bed
sufficiently to heat the stream. Bed heat exchanges counteract daytime energy inputs and
can minimize downstream warming (Leach & Moore, 2011), and constitute up to 10 % of
net radiative exchange in step-pool headwater streams (Moore, Sutherland, Gomi, &
Dhakal, 2005b) to less than 1 % in streams with negligible groundwater inputs (Garner,
Malcolm, Sadler, & Hannah, 2014).

Riparian forest canopies are critical for preserving stream temperatures by
limiting the loading of solar radiation at the stream surface (Bladon, Segura, Cook,
Bywater-Reyes, & Reiter, 2018; Garner et al., 2014; Simmons et al., 2014; Wondzell,
Diabat, & Haggerty, 2019) and mitigating associated increases in stream temperature
(Groom, Dent, Madsen, & Fleuret, 2011; Rex, Maloney, Krauskopf, Beaudry, &
Beaudry, 2012). As such, a reduction in riparian canopy cover during forest management
activities, or due to forest disturbances, can lead to increased stream temperature
sensitivity to atmospheric energy exchanges (Gomi, Moore, & Dhakal, 2006; Moore et

al., 2005b; Simmons et al., 2014), compounding the effect on stream temperatures



through space and time. However, in small headwater catchments, stream temperatures
may not respond to reductions in canopy cover (Janisch, Wondzell, & Ehinger, 2012;
Larson, Larson, & Larson, 2002) and may be more influenced by subsurface hydrology
(Leach & Moore, 2011; Macdonald, Boon, Byrne, & Silins, 2014; Wagner et al., 2014),
topography (Callahan et al., 2015; Ebersole, Liss, & Frissell, 2003), bed conductive heat
transfer (Story, Moore, & Macdonald, 2003), or hyporheic exchange (Magnusson, Jonas,
& Kirchner, 2012; Moore et al., 2005b; Poole & Berman, 2001). Thus, these influences
on stream temperature are difficult to generalize across diverse regions and additional
work is needed to assess the relative importance of riparian shade, subsurface hydrology,

and atmospheric controls on stream temperature in headwater catchments.

Heat fluxes dominating stream temperature vary in both time and space, creating
a distinct thermal landscape (Steel et al., 2017), that creates thermal variability along a
stream. Few studies have characterized the complexities of the longitudinal thermal
regime in headwater streams across diverse regions, as many studies have suggested the
importance of different factors on stream temperature with one or few point
measurements at or near the watershed outlet (e.g., Rex et al., 2012; Kibler et al., 2013)
or by focusing study in a single region (Dent, Vick, Abraham, Schoenholtz, & Johnson,
2008; Garner et al., 2014; Leach & Moore, 2011). This has prevented accurate
characterization of reach-scale thermal heterogeneity and understanding of the

mechanisms governing stream thermal regimes across diverse regions.

Efforts to describe the drivers of longitudinal stream temperature dynamics have
illustrated the important roles of stream geomorphology (Leach & Moore, 2011;
O’Sullivan, Devito, & Curry, 2019), hyporheic exchange (Kasahara & Wondzell, 2003;
Moore & Wondzell, 2005), geology (Briggs et al., 2018b; Johnson, 2004; Tague, Farrell,
Grant, Lewis, & Rey, 2007), canopy cover (Garner et al., 2014; Groom et al., 2011;
Simmons et al., 2014), atmospheric exchanges (Bond, Stubblefield, & Van Kirk, 2015;
Lisi et al., 2015), and discharge (Bond et al., 2015; Hilderbrand, Kashiwagi, &
Prochaska, 2014). Geomorphic attributes including channel aspect, width, depth,
confinement, and slope can also influence stream temperatures at the reach scale (Garner,

Malcolm, Sadler, & Hannah, 2017; O’Briain et al., 2017; Woltemade, 2017) through



bank and topographic shading, frictional heating, and variations in water residence time.
Small scale geomorphic elements common in steep headwaters such as step-pools and
large wood that drive hyporheic exchange can potentially cool stream temperatures
(Kasahara & Wondzell, 2003). However, the relative importance of each of these factors

has yet to be fully disentangled across diverse regions.

Of particular interest is underlying watershed lithology—the geologic
characteristics of bedrock and soil parent material—which may influence stream
temperatures by controlling subsurface hydrological pathways (Nickolas, Segura, &
Brooks, 2017; Segura et al., 2019; Tague et al., 2007) and runoff generation processes
(Johnson, Snyder, & Hitt, 2017; O’Sullivan et al., 2019; Uchida, Kosugi, & Mizuyama,
2002). For instance, Tague et al., (2007) determined that spring dominated streams in
Oregon draining resistant lithology were less thermally sensitive to changing air
temperatures than lower elevation shallow sub-surface flow dominated streams due to
differences in the magnitude of streamflow sourced from the subsurface. As well, in an
Oregon headwater stream, water flowing over bedrock warmed more quickly than water
flowing over alluvial substrates, likely due to the low bedrock permeability that lead to
limited hyporheic exchange with bed sediments and greater atmospheric control of
stream temperature (Johnson, 2004). Watershed lithology may also influence the
distribution of instream substrate (Fratkin, Segura, & Bywater-Reyes, 2020; Johnson,
2004) and geomorphic properties of the stream channel (Briggs et al., 2018c), which can
influence stream temperature dynamics in headwater catchments and their responsiveness
to disturbance such as forest harvesting (Bladon et al., 2018; Janisch et al., 2012).
Determining the factors that influence the longitudinal thermal regime in headwater
systems is key to improving existing models (Leach et al., 2016) and to facilitate

informed water and forest management decisions across diverse regions.

In addition to regional watershed lithology, reach-scale topography may also
influence the longitudinal thermal regime (Callahan et al., 2015; Monk, Wilbur, Allen
Curry, Gagnon, & Faux, 2013) and may be useful in unraveling runoff production
processes during storm events (Hangen, Lindenlaub, Leibundgut, & Von Wilpert, 2001;

Jencso et al., 2009). Runoff generation in steep forested headwater catchments is often



controlled by physiographic characteristics, such as geology and topography (Gabrielli,
McDonnell, & Jarvis, 2012; Gomi et al., 2010; Hangen et al., 2001; Zimmer & McGlynn,
2017) and by temporal variability in water inputs that drive catchment hydrologic storage
(Amatya et al., 2016; Dralle et al., 2018; Sidle et al., 2000). During a storm event,
precipitation is partitioned into one of several pathways depending on rainfall intensity
(Detty & McGuire, 2010), soil infiltration capacity (Gomi et al., 2010), antecedent
moisture conditions (Lange & Haensler, 2012; Radke et al., 2019), and overall catchment

storage (Zimmer & McGlynn, 2018, 2017).

Because stream temperature is non-reactive, naturally occurring, and relatively
inexpensive to monitor, it has potential utility as a tracer to understand surface water-
groundwater interactions and subsurface hydrologic connectivity during storm events
(Constantz, Cox, & Su, 2003; Leach et al., 2017; Oware & Peterson, 2020; Ploum, Leach,
Kuglerova, & Laudon, 2018; Shanley & Peters, 1988; Uchida et al., 2002). For instance,
Uchida et al. (2002) monitored stream and soil temperatures in a steep forested catchment
in Japan to differentiate between contributions to stormflow from water at the soil-
bedrock interface and shallow bedrock, effectively illustrating the sources of water
contributing to streamflow during storms. Similarly, stream temperature and commonly
used topographic metrics, such as upslope accumulated area (UAA), topographic wetness
index (TWI), and flow weighted slope (FWS), that theoretically describe the location of
saturated soil and subsurface water flow paths, have been used successfully to locate
areas of strong lateral groundwater influence in boreal regions (Leach et al., 2017) and
elucidate topographic control on stream temperature in southern Alaska (Callahan et al.,
2015). However, no assessment has been done in the Coast Range of Northern California,
where subsurface heterogeneity may prevent accurate characterization of discrete
groundwater inflow using metrics derived from the surface (e.g., Gabrielli, McDonnell, &

Jarvis, 2012; Genereux, Hemond, & Mulholland, 1993).

In forested catchments along the Northern California Coast, soil hydraulic
conductivity is typically high and rainfall intensities low such that overland flow is rare
(Keppeler & Brown, 1998), except on bedrock outcrops or areas with extremely shallow

soils (e.g., Uchida et al., 2002). Therefore, subsurface flow pathways commonly



dominate during storm events, but the exact partitioning of water inputs into shallow
subsurface flow and deeper groundwater flow paths may vary depending on soil
characteristics, antecedent moisture conditions, topography, and storm characteristics
(Detty & McGuire, 2010; Gomi et al., 2010; Penna et al., 2015; Rinderer, Van Meerveld,
& Seibert, 2014; Van Meerveld, Seibert, & Peters, 2015).

Additionally, research assessing stream temperature change during storm events
in forested headwaters is limited (Hebert, Caissie, Satish, & El-Jabi, 2011), and there
have been few dedicated efforts assessing the influence of storm events on the stream
longitudinal thermal regime. During storm events, quickflow from shallow subsurface
stormflow or preferential soil channels can strongly influence stream temperatures
(Lange & Haensler, 2012; Leach & Moore, 2014; Subehi et al., 2010). But, the response
varies depending on seasonally variable antecedent moisture conditions (Lange &
Haensler, 2012; Subehi et al., 2010), meteorological conditions (Herb, Janke, Mohseni, &
Stefan, 2008; Somers, Bernhardt, Mcglynn, & Urban, 2016), and catchment topography
(Leach et al., 2017; Subehi et al., 2010). A better understanding of the variable response
to precipitation inputs along headwater channels may provide information into the timing
and delivery of runoff, with implications for downstream water quality (Somers et al.,

2013; Wilby, Johnson, & Toone, 2015).

Hysteresis analysis has been used to characterize the transport of water quality
constituents in catchments during storm events (Aguilera & Melack, 2018; Liu, Birgand,
Tian, & Chen, 2021; Mistick & Johnson, 2020; Vaughan et al., 2017). Water quality
hysteresis describes the phenomena where a measured constituent has a different
relationship with or lags behind discharge during a storm event. This behavior is
commonly separated by rising and falling limbs of the hydrograph, where transport
behavior of the constituent of interest from the catchment varies between the two.
Specifically, hysteresis metrics have recently been developed to easily quantify the
direction, slope, and size of hysteretic loops and make comparisons between storms and
catchments (Lloyd, Freer, Johnes, & Collins, 2016a, 2016b). During storm events or
snowmelt episodes, stream temperature variability with streamflow exhibits hysteresis

behavior (Blaen, Hannah, Brown, & Milner, 2013; Kobayashi, Ishii, & Kodama, 1999).



Hysteresis behavior has also been observed in the relationship between stream
temperature and precipitation inputs (Kobayashi et al., 1999; Subehi et al., 2010). For
instance, clockwise hysteresis behavior during storms when air temperatures are greater
than stream temperatures may indicate thermal transfer from shallow quickflow sources
that warm the stream water during the rising limb of the hydrograph. In addition,
hysteresis loops with a positive slope likely indicate flushing of heat from the catchment
that causes stream temperatures to rise towards the hydrograph peak, while loops with a
negative slope indicate dilution of heat from the catchment (i.e., from deep-sourced
groundwater or direct channel precipitation) (Kobayashi et al., 1999). Quantifying stream
temperature hysteresis may provide insights into how headwater streams respond to

storm events across seasons and catchment characteristics.

Forested headwaters represent the landscape features with the strongest
connection between terrestrial and aquatic elements (Freeman et al., 2007; Schlosser,
1991), and are more reactive to inputs of precipitation than downstream reaches (Wilby et
al., 2015). Thus unsurprisingly, there is continued interest in understanding the
responsiveness of headwater channels to perturbations at the management-relevant reach
scale. For instance, there have been recent calls for riparian forest management practices
to consider the spatially variable hydrological connectivity inherent to forested
headwaters (Kuglerova, Agren, Jansson, & Laudon, 2014; Laudon et al., 2016; Tiwari et
al., 2016), such as by incorporating wider riparian buffers near variable source areas or
permanently saturated areas (Erdozain et al., 2020). Indeed, certain locations along
headwater channels in boreal systems have been shown to provide disproportionate
contributions of runoff to streamflow given local topography and soil conditions. These
so-called discrete riparian inflow points (DRIPS) (Ploum et al., 2018) can have a large
influence on stream water chemistry and temperature (Erdozain et al., 2020; Lowry,
Walker, Hunt, & Anderson, 2007), and require additional study to determine their
influence on stream temperature during storm events. This has important implications for
understanding how anthropogenic (forest harvesting activities) or natural (windthrow,

debris flows) disturbance influences runoff generation and water quality downstream.
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The objective of this thesis is to improve our understanding of headwater stream
temperature dynamics by assessing how regional lithology influences the summer
thermal regime and how headwater channels respond to seasonally variable precipitation
inputs. In chapter 2, I present results from a regional study comparing the summer
longitudinal thermal regime and thermal sensitivity of stream temperature to air
temperatures between eight headwater catchments draining sedimentary (sandstone) and
volcanic (basalt) lithology across Northern California. I hypothesized that streams
underlain by coarse, fractured, volcanic lithology would be less thermally sensitive to
changing air temperatures than streams draining thin, friable sandstone lithology because
of differences in subsurface permeability that yields variable surface water-groundwater

interactions between regions.

In chapter 3, I use hysteresis analysis to assess stream temperature change during
storm events across seasons in ten headwater catchments in the Northern California Coast
Range to better understand how forested headwaters respond to precipitation, and
whether local topography influences the stream temperature response to storm events. |
hypothesized that the direction of stream temperature hysteresis would vary across
seasons due to changes in meteorological conditions and that the stream locations most
hydrologically connected to the hillslope (as predicted by topographic indices) would
exhibit the greatest hysteresis due to greater hydrologic input via lateral throughflow. In
chapter 4, I present a synthesis and discussion of how the results from chapters 2 and 3
may be used to inform riparian forest management along headwater streams and also

present questions for future investigation.
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Chapter 2: Comparing headwater stream thermal sensitivity across two contrasting
lithologies in Northern California

2.1: Abstract

Understanding drivers of thermal regimes in headwater streams is critical for a
comprehensive understanding of freshwater ecological condition and habitat resilience to
disturbance, and to inform sustainable forest management practices. However, stream
temperatures may vary depending on characteristics of the stream, catchment, or region.
To improve our knowledge of the key drivers of stream thermal regime, we collected
stream and air temperature data along eight headwater streams in two regions with
distinct lithology, climate, and riparian vegetation. Five streams were in the Northern
California Coast Range at the Caspar Creek Experimental Watershed Study, which is
characterized by permeable sandstone lithology. Three streams were in the Cascade
Range at the LaTour Demonstration State Forest, which is characterized by fractured and
resistant basalt lithology. We instrumented each stream with 12 stream temperature and
four air temperature sensors during summer 2018. Our objectives were to compare stream
thermal regimes and thermal sensitivity—slope of the linear regression relationship
between daily stream and air temperature—within and between both study regions. Mean
daily stream temperatures were ~4.7 °C warmer in the Coast Range but were less variable
(SD = 0.7 °C) compared to the Cascade Range (SD = 2.3 °C). Median thermal sensitivity
was 0.33 °C °C"! in the Coast Range and 0.23 °C °C! in the Cascade Range. We posit
that the volcanic lithology underlying the Cascade streams likely support discrete
groundwater discharge locations, which dampened thermal sensitivity. At locations of
apparent groundwater discharge in these streams, median stream temperatures rapidly
decreased by 2.0 °C, 3.6 °C, and 7.0 °C relative to adjacent locations, approximately 70—
90 meters upstream. In contrast, Coast Range streams draining thin friable soils likely
had baseflow sourced from shallow subsurface sources, which was more sensitive to air
temperature and generally warmed downstream (up to 2.1 °C km™). Our study revealed
distinct longitudinal thermal regimes in streams draining contrasting lithology, suggesting
that streams in these different regions may respond differentially to forest disturbances or

climate change.
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2.2: Introduction

Stream temperature (75) is a critical water quality parameter that drives dissolved
oxygen solubility (Loperfido et al., 2009; Ozaki et al., 2003), nutrient cycling (Morin et
al., 1999; Neres-Lima et al., 2017), in-stream primary productivity (Bernhardt et al.,
2018), and habitat suitability for aquatic species (Brewitt et al., 2017). Warming stream
temperatures can negatively impact sensitive cold water aquatic species, such as salmonid
fishes and amphibians, by reducing habitat suitability for spawning and rearing life
stages, and influencing individual metabolism and behavior (Dallas & Ross-Gillespie,
2015; Eaton & Scheller, 1996; Hester & Doyle, 2011; Railsback & Rose, 1999). Recent
studies have illustrated that climate change and shifts in forest disturbance regimes have
the potential to intensify thermal pollution and increase the risks to anadromous fish and
other aquatic vertebrate populations (Benjamin, Connolly, Romine, & Perry, 2013; Ford
et al., 2011; Thomas et al., 2004). In Mediterranean climates, the threat to aquatic species
is particularly important during the summer low flow period, when precipitation inputs
are low and both thermal inputs from solar radiation and convective heat exchange
between the warm air and cooler streams are at their maximum (Arismendi et al., 2013;

Larsen & Woelfle-Erskine, 2018; Xu, Letcher, & Nislow, 2010).

However, research on longitudinal thermal regimes of streams has revealed
substantial complexity and variability in the dominant processes driving the spatial
patterns in stream temperature (Fullerton et al., 2015, 2018; Hofmeister, Cianfrani, &
Hession, 2015). For many years, the conventional perspective was that stream
temperature increased progressively from headwaters to larger downstream river systems
(Caissie, 2006; Vannote et al., 1980). Other studies have quantified decreasing stream
temperature moving downstream in some headwaters (Dent et al., 2008; Leach & Moore,
2011; Moore et al., 2005b; Story et al., 2003) and larger streams (O’Sullivan et al., 2019).
Additionally, recent advances in remote sensing technology and larger scale observations
have revealed that many streams cannot be characterized by a simple longitudinal profile
pattern in stream temperature (Briggs, Dawson, Holmquist-Johnson, Williams, & Lane,
2018a; Dugdale et al., 2015; Ebersole et al., 2015; Fullerton et al., 2015). This is

especially true for non-fish bearing headwaters, where complex geomorphology and
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discrete groundwater inputs can produce distinct patterns of flow permanence and
network connectivity (Gendaszek et al., 2020; Pate et al., 2020) that influence stream

temperature.

Despite recent advances in our knowledge, there is still much uncertainty about
the longitudinal patterns in stream temperature due to numerous local and regional
controls. One dominant local control on stream temperature is groundwater discharge,
which in some systems can provide a stable supply of cool water and promote refugia for
sensitive aquatic species during summer (Arscott, Tockner, & Ward, 2001; Briggs et al.,
2018b; Griebler & Avramov, 2015; Snyder, Hitt, & Young, 2015). Groundwater
contributions are, in part, controlled by regional lithology and are typically greater in
more permeable geology (Hale & McDonnell, 2016). The magnitude of groundwater
contributions may also be influenced by channel morphology (Johnson, Wilby, & Toone,
2014; Kasahara & Wondzell, 2003; Moore et al., 2005b; Story et al., 2003), the direction
of subsurface hydraulic gradients (Peterson & Sickbert, 2006), the available alluvial
hydraulic storage (Kelson & Wells, 1989), and the catchment hydraulic conductivity
(Morrice, Valett, Dahm, & Campana, 1997). In headwater streams with a predominance
of groundwater discharge, stream temperature is often cooler and less variable (Brown &
Hannah, 2008; Danehy, Colson, & Duke, 2010; Johnson, 2004). Localized springs
(Leach & Moore, 2011) and zones of concentrated upwelling (Moore et al., 2005b) can
cause downstream cooling and reduce stream temperature variation, even during the
winter (Danehy et al., 2010; Westhoff & Paukert, 2014). As such, streams with
substantial groundwater discharge may be less responsive to reductions in canopy cover
and subsequent increases in radiative loading (Janisch et al., 2012; Larson et al., 2002)
compared to streams with lesser groundwater contributions (Bladon et al., 2018; Dent et

al., 2008; Moore et al., 2005a; Story et al., 2003).

Many studies have used air temperature as a predictor of stream temperature
(Jackson, Fryer, Hannah, Millar, & Malcolm, 2018; Kelleher et al., 2012; Mayer, 2012;
Mohseni & Stefan, 1999; Segura, Caldwell, Sun, Mcnulty, & Zhang, 2015; Snyder et al.,
2015; Stefan & Preud’homme, 1993), although convective heat exchange at the water

surface often represents a minor portion of the overall stream heat budget (Johnson,
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2003). Regardless, air temperature has been used successfully to develop simple,
empirical models that predict changes in stream temperature due to climate change
(Caldwell et al., 2015) or to identify locations of groundwater discharge (Fullerton et al.,
2018; Mayer, 2012; Snyder et al., 2015). Air temperature has often been an effective
predictor of stream temperature at coarse temporal scales (e.g., daily, weekly, monthly;
Segura et al., 2015) and can act as a surrogate for total heat flux to the stream surface
(Arismendi, Safeeq, Dunham, & Johnson, 2014; Gomi et al., 2006; Gu, Anderson, Colby,
& Coffey, 2015; Mohseni & Stefan, 1999; Tague et al., 2007).

The relationship between air and stream temperature is often described with a
linear regression model in which the slope provides an indicator of the thermal sensitivity
of the stream (Lisi et al., 2015; Segura et al., 2015; Snyder et al., 2015). This relationship
can also be used to elucidate the spatial extent of different streamflow contributions
(Kelleher et al., 2012; Mayer, 2012; Snyder et al., 2015). For example, stream segments
dominated by groundwater discharge or substantial hyporheic exchange may be identified
by stable stream temperatures or lower thermal sensitivity to diel and seasonal variations
in air temperature. Comparatively, stream segments with greater channelized flow, less
groundwater or hyporheic contributions may be characterized by greater fluctuations in
stream temperature due to greater coupling with atmospheric controls. This observational
tool has been used in many broad applications to assess contributions of groundwater and
hyporheic flow (Briggs et al., 2018b; Johnson et al., 2014; Mayer, 2012; Selker, van de
Giesen, Westhoff, Luxemburg, & Parlange, 2006; Snyder et al., 2015). However, the
longitudinal variability in thermal sensitivity along headwater streams remains poorly
characterized and the potential implications for headwater stream management in

contrasting regions are not known.

In our study, we quantified both stream temperature and air temperature in eight
headwater streams draining contrasting lithologies in Northern California. Specifically,
we deployed 128 thermistors longitudinally down streams draining volcanic basalt
(Cascade Range) and friable sandstone (Coast Range) lithology to characterize local and
longitudinal trends in stream warming or cooling. We also sought to quantify the degree

of atmospheric control on stream temperature, or thermal sensitivity, to improve our
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understanding of the processes driving longitudinal stream temperature variability in
headwater streams. Thus, our primary objectives were to: (a) compare stream and air
temperatures during the summer low flow period in streams draining contrasting
lithology, (b) quantify the reach-scale longitudinal variability in stream and air
temperatures in streams draining contrasting lithology, and (c) quantify inter- and intra-
regional thermal sensitivity in streams draining contrasting lithology. Our results revealed
differences in the likely processes governing the stream thermal regimes across our two
study regions. We observed greater longitudinal thermal heterogeneity in streams
underlain by basalt than sandstone, which we posit was driven primarily by the presence
of discrete groundwater discharge locations that dominated over atmospheric control on
stream temperature at these locations. Understanding the dominant controls on the
thermal regime of small headwater streams is critical to make informed management

decisions in headwater catchments across diverse regions.

2.3: Methodology

2.3.1: Study Locations

Our study occurred in two distinct geological regions of Northern California: the
Southern Cascade Range (LaTour Demonstration State Forest) and the North Coast
Range (Caspar Creek Experimental Watershed in Jackson Demonstration State Forest)
(Figure 2.1). The two regions were selected to represent strongly different climates,

geologies, and dominant forest types (Table 2.1).

Our study included three streams in the Cascade Range: Beaver Creek, (BEA),
Bullhock Creek (BUL), and Sugar Creek (SUG). All three streams are step-pool systems
(Montgomery & Buffington, 1997) with few large cascades—they all have similar slope,
canopy cover, and elevation (Table 2.2). Soils are coarse, fast draining loams with depths
< 2 meters (McDonald, 1995). The stream channel substrate was coarse gravel (Dso: 46—
60 mm) except in locations behind debris jams where finer substrate accumulated (Pate et
al., 2020). Valleys in the Cascade Range are U-shaped carved by glaciation processes

with stream channels typically unconfined, except in some locations along Sugar Creek.
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The geology in the Cascade Range contains resistant, fractured basalt and andesite
(MacDonald, 1963) characterized by rapid drainage to deep groundwater aquifers with
long residence times (Tague et al., 2007; Tague, Grant, Farrell, Choate, & Jefferson,
2008) typical of volcanic geology (Jaeger et al., 2007). The climate is semi-arid, with hot,
dry summers, and snowy, cold winters (CAL FIRE, 2013) (Table 2.1). Precipitation is
snow dominated with snowpack persisting often into early May (McDonald, 1995;
PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, accessed
April 10, 2020), with a snow water equivalent depth on April 1, 2018 of 384 mm (Snow
Mountain, CA station, 18 km from study location; NRCS, 2020). The forests in our study
catchments were dominated by 10 to 17 m tall sugar pine (Pinus lambertiana), lodgepole
pine (Pinus contorta), and ponderosa pine (Pinus ponderosa), with some Douglas-fir
(Pseudotsuga menziesii) and mountain hemlock (7suga mertensiana), with a

comparatively low to moderate density canopy cover (Oregon State LEMMA Database,

2020) (Table 2.1).

Study streams in the North Coast Range were located in the Caspar Creek
Experimental Watershed Study, where research has been ongoing since 1961 addressing
questions about forest management effects on forest hydrology and water quality
(Cafferata & Reid, 2013; Keppeler, Ziemer, & Cafferata, 1994). We included five
streams in the Coast Range: Henningson (HEN), Iverson (IVE), Richards (RIC),
Williams (WIL), and Xray (XRA) Creeks, which are step-pool systems (Montgomery &
Buffington, 1997) with a few small cascades and similar slope, canopy cover, and
elevation (Table 2.2). The channel substrate for all streams was medium gravel (Dso: 13—
24 mm). Valleys are steep and V-shaped with considerable channel incision, resulting in
strong confinement and coupling between the streams and hillslopes. Soils were 1 to 1.5
meters deep, well drained loams underlain by a restrictive clay layer, which results in
substantial pipeflow that rapidly transfers shallow subsurface flow laterally to the channel
(Amatya et al., 2016; Keppeler & Brown, 1998). Geology of the region is dominated by
friable sandstone and mudstone lithology of the Franciscan complex (Amatya et al.,
2016). Winter climate is characterized as mild, cool, and wet, with temperatures rarely

below 0 °C, while summers are warm and dry (Keppeler et al., 1994) (Table 2.1).
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Precipitation is rain dominated, with >1,200 mm falling annually (PRISM Climate
Group, Oregon State University, http://prism.oregonstate.edu, accessed April 10, 2020).
Riparian vegetation consists of 20 to 30 m tall, dense (canopy cover between 78 to 91 %;
Oregon State LEMMA Database, 2020) coast redwood (Sequoia sempervirens) forest,
with Douglas-fir (Pseudotsuga menziesii), grand fir (4bies grandis), and western

hemlock (Tsuga heterophylla) occurring at lower densities (Cafferata & Reid, 2013).

2.3.2: Data Collection

In each of the eight study streams, we installed 16 HOBO TidbiT v2 sensors
(Onset, Bourne, MA; accuracy + 0.21 °C) to measure both air and stream temperature
(128 total sensors). Specifically, we installed 12 stream temperature sensors and four air
temperature sensors along each stream to collect continuous data (15-minute intervals).
The four air temperature sensors were co-located with stream temperature sensors near
the top, bottom, and two midpoints of each stream (Figure 2.1, inset). In-stream sensors
were placed along the thalweg and secured with rebar driven through the channel bottom.
Air temperature sensors were placed adjacent to the channel and suspended from tree
branches approximately one meter above the ground. All sensors were enclosed in
sections of white PVC tubing with drilled holes to allow fluid exchange and to minimize
solar influences. Stream temperature sensors were positioned approximately every 80 m
in the Cascade Range streams and every 30 to 60 m in the Coast Range streams (Table
2.2). Sensor spacing was regular and dictated by the available stream length from the

point of channel head initiation to the confluence with a higher order stream.
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2.3.3: Data Analysis

Temperature data was first visually explored to remove periods when sensors
were not submerged. To do this, we visually assessed and compared the diel temperature
range of stream temperature and adjacent air temperature sensors to discern periods when
sensors were dry (Campbell et al., 2013; Sowder & Steel, 2012). If sensors were lost
during the study, we assumed that any sensor that went dry prior to being lost remained
dry throughout the remainder of the monitoring period. Similarly to previous research
(Arismendi, Dunham, Heck, Schultz, & Hockman-Wert, 2017), we made this decision by
considering data for sensors with complete records, which indicated that once the stream
sections went dry, they remained dry for the rest of the summer. We did not make
assumptions for sensors that were submerged prior to being lost. As a result, from the
total available stream temperature data in the Cascade Range we were able to use 44 % in
SUG, 49 % in BUL, and 91 % in BEA. Comparatively, in the Coast Range we were able
to use 28 % of the data in HEN, 47 % in IVE, 48 % in WIL, 42 % in XRA, and 69 % in
RIC. Data exploration, quality control, and statistical analysis were conducted in R

version 3.6.1 (R Core Team, 2020).

We focused our analysis on the summer low flow period (June 1-September 30,
2018), when the warmest stream temperatures are typically recorded in the northern
hemisphere (Dent et al., 2008; Groom, Johnson, Seeds, & Ice, 2017; Macdonald et al.,
2014). Specifically, we quantified the diel range and daily maximum, minimum, median,
and mean temperatures. Statistically, we used one factor ANOVA with Tukey’s post hoc
tests to assess differences in daily mean air temperatures recorded among and within
streams in both regions, and among streams in each region. Welch’s two-sample #-test

was used to assess differences in daily stream and air temperature metrics among regions.
2.3.3.1: Assessing longitudinal stream temperature trends

We quantified the rate of downstream warming or cooling for each stream by
fitting a linear regression equation with upstream distance (m) as the independent

variable and average daily mean stream temperatures at each sensor location (°C) as the
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dependent variable (Figure Al). Regression slopes greater than zero indicated net

downstream warming, while slopes less than zero indicated net downstream cooling.

We quantified the average incremental temperature difference (AITD) as the
absolute value of the difference in the average mean daily stream temperatures between
adjacent sensors within each individual stream. Specifically, we calculated AITD to

provide an indicator of the site-level variability in stream temperature as:

U ADM; — ADM;
arrp = 2=t n‘_ - il 2.1)

where ADM; was the average daily mean stream temperature measured at an
upstream location, ADM; ,, was the average daily mean stream temperature measured at
the nearest location downstream, and » was the number of stream temperature monitoring
locations in each stream (8—12). Large values of AITD, were indicative of high
variability in stream temperature magnitude from site to site along each stream.
Alternatively, low values of AITD, were indicative of comparatively low site-level
variability in stream temperature magnitude. Although the AITD metric captured
variability in the central tendency of stream temperature at each monitoring location
(average daily mean), it did not consider the variability in stream temperature at each
monitoring location. For that reason, we also calculated the average incremental standard
deviation difference (AISDD) as the absolute value of the difference between the average
daily standard deviation in stream temperatures at each in-stream sensor and the one

immediately downstream, using:

n—1
"1 ADSD; — ADSD;
AISDD = Li=i| - — - i1l (2.2)

where ADSD; was the average of the standard deviation of daily stream
temperature at an upstream location, ADSD;,, was the average of the standard deviation
of daily stream temperature at the location immediately downstream, and » was the
number of stream temperature monitoring locations in each stream (8—12). One value of
AITD and AISDD was calculated for each stream to assess site-level thermal

heterogeneity.
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2.3.3.2: Stream thermal sensitivity analysis

To assess relative differences in atmospheric control on stream temperature
between and within streams in the Coast and Cascade Ranges, we used the linear
relationship between mean daily stream and air temperatures (equation 2.3). Mean daily
stream temperatures (7) for each in-stream sensor were regressed against mean daily air

temperature (7,) values from the nearest sensor as:
Te=mT, +b (2.3)

where m is the regression slope (hence forth referred to as the thermal sensitivity)
and b is the intercept. Thus, our analysis provided up to 12 linear regression equations
and corresponding thermal sensitivity values per stream. Prior to analysis, we removed
temperature data below 0 °C as linear regression relationships between stream and air
temperature were only valid for temperatures above freezing (Mayer, 2012; Mohseni &
Stefan, 1999; Morrill, Bales, & Conklin, 2005; Segura et al., 2015). Additionally, we also
removed daily mean temperature values derived from less than a complete day of data
(i.e., n <96, 15-minute interval data points) prior to fitting linear regression models—this
resulted in removal of ~0.2 % of the data (23 days) across all sites. Regression equations
where T, was not significantly correlated with 7§ (p > 0.05) were not included in the final
analysis. Out of 96 stream temperature sensors, 14 were dry at the beginning of
monitoring and one was lost during high flows. Four of the remaining 81 models were
excluded due to a lack of correlation between 7, and 75, and were assumed to contain
substantial sources of unexplained variation, which was likely due to additional factors
that provided greater control on stream temperature than atmospheric conditions.
Therefore, 77 model fits were used in the final analysis. The coefficient of determination
(R*) was used to assess individual model fits. Median thermal sensitivity values measured
in each region were compared using the non-parametric Wilcoxon Rank Sum test as it
was determined that the distribution of thermal sensitivity values measured in the

Cascade Range streams were not normally distributed (Shapiro-Wilk test, p < 0.05).
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2.4: Results

2.4.1: Summer air and stream temperatures

Overall, our data indicated that during summer 2018 air temperatures were
warmer and exhibited greater diurnal variability in the Cascade Range than in the Coast
Range of California (Table 2.3). Specifically, daily mean air temperatures were 1.63 °C
(95 % confidence interval (CI): 1.49—-1.75 °C) warmer in the Cascade Range than in the
Coast Range (1 =-24.67, p < 0.01; Figure 2.2). Air temperatures were also more variable
in the Cascade Range—the average diel air temperature range in the Cascade Range was
~2.3-times greater than in the Coast Range (Table 2.3). Daily maximum air temperatures
in the Cascade Range (average: 26.2 °C) were also higher than in the Coast Range
(average: 17.6 °C; t =-74.52, p < 0.01). Alternatively, daily minimum air temperatures
were on average 1.45 °C (95 % CI: 1.33-1.59 °C) warmer in the Coast Range (9.95 °C)
than in the Cascade Range (8.48 °C; t=21.78, p < 0.01).

Table 2.3. Stream (7) and air (75,) temperature statistics during summer 2018 (June 1 to

September 30) for streams in the Coast and Cascade Ranges. Avg. = Average, SD =
standard deviation.

Ave. Aveg. Ave. AVE Ao diel
. Daily . Daily Daily
Type Region Mean Daily SD Max Min range
°C °C
T Cascade Range 14.73 5.48 26.22 8.49 17.73
“ Coast Range 13.11 2.44 17.60 9.95 7.66
- Cascade Range 7.30 0.68 8.77 6.53 2.24
* Coast Range 12.00 0.28 12.46 11.59 0.90

There was strong evidence (F (2, 2620) = 2.11, p <0.01) that average daily mean
air temperatures were different between streams in the Cascade Range. For example, the
air temperature at BUL was ~0.31 °C warmer than at BEA and 0.70 °C warmer than at
SUG (Figure 2.2). Comparatively, there was suggestive evidence (F (4, 3399)=2.11,p =
0.08) that average daily mean air temperatures were different between streams in the
Coast Range (Figure 2.2). However, there was strong evidence that both the average daily

minimum (F (4, 3399) = 16.64, p < 0.01) and maximum (F (4, 3399) = 89.73, p <0.01)
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air temperatures were different across streams in the Coast Range (Table A1).
Longitudinally, the average daily mean air temperatures differed between proximate air
temperature sensors in the Coast Range by 0.10-0.75 °C and in the Cascade Range by
0.42-2.2 °C (Figure A2). Similarly, in the Coast Range the average daily minimum air
temperatures between proximate sensors varied by 0.08—1.45 °C, while the maximum
temperatures varied by 0.02—4.0 °C. In the Cascade Range, the average daily minimum
air temperatures between proximate sensors varied by 0.10-2.95 °C, while the maximum
temperatures varied by 0.90-11.15 °C. Thus, there was greater within-region air

temperature variation in Cascade Range streams than in Coast Range streams.

Overall, our data indicated that summer stream temperatures were substantially
cooler, but more variable in the Cascade Range streams compared to streams in the Coast
Range (Figure 2.2). The average daily mean stream temperature in the Cascade Range
streams (7.3 °C) was significantly cooler than in the Coast Range (12.0 °C; t=112.4,p <
0.01; Table 2.3). While the streams were cooler, the average diel stream temperature
range in the Cascade Range (2.2 °C day™') was ~2.5-times greater than in the Coast
Range (0.9 °C day'; r=-45.79, p < 0.01). We also found strong evidence that average
daily maximum stream temperatures in the Cascade Range streams (8.8 °C) were less
than in the Coast Range streams (12.5 °C; ¢ =72.3, p <0.01). Average daily minimum
stream temperatures were also cooler in the Cascade Range streams (6.5 °C) compared to
the Coast Range streams (11.6 °C, ¢ = 134.0, p <0.01). Site-level stream temperature
statistics are available in Table A2. Figure A3 also outlines mean daily temperature time

series trends for the entire summer season.
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Figure 2.2. Comparison of air and stream temperature distributions among streams in the
Coast and Cascade Ranges. Data were pooled from all temperature sensors within each
stream. The boxplot central tendency line is the median, shaded boxes represent the
interquartile range (IQR), whiskers represent the largest value up to 1.5-times the IQR,
and the black dots indicate outliers beyond 1.5-times the IQR.

2.4.2: Longitudinal stream temperatures

Longitudinally down the entire length of our study streams in the Cascade Range,
stream temperature generally cooled (-0.66 to -3.9 °C km™") (Table 2.4). In contrast, four
of the five streams in the Coast Range warmed (0.18 to 2.1 °C km™') in the downstream
direction, while HEN displayed moderate cooling (-1.1 °C km™) (Table 2.4 and Figure
2.3). The average incremental temperature difference (AITD) between each stream
temperature sensor and the one immediately downstream was greater in the Cascade
streams (1.0 °C) compared to the Coast Range streams (0.29 °C; ¢ = 3.8, p = 0.03),
indicating greater longitudinal variability in stream temperature magnitude in the Cascade
Range streams (Table 2.4). AITD values ranged from 0.66 to 1.3 °C in Cascade Range
steams and from 0.17 to 0.42 °C in Coast Ranges streams (Table 2.4). The average

incremental difference in daily stream temperature standard deviation (AISDD) in the
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Cascade Range streams was 0.41 °C, ranging from 0.19 °C (BEA) to 0.61 °C (SUQG).
Comparatively, the AISDD in the Coast Range streams was 0.19 °C, ranging from

0.15 °C (RIC) to 0.31 °C (HEN). Despite these differences, statistically, we did not find
evidence that AISDD values were greater in Cascade Range streams compared to Coast
Range streams (¢ =1.73, p=0.11).

Table 2.4. Longitudinal linear regression modeling results to assess downstream
warming or cooling, and longitudinal heterogeneity in stream temperature in each stream.
AITD = average difference in average daily mean stream temperature between each
stream temperature sensor and the sensor immediately downstream. AISDD = average

difference in average daily stream temperature standard deviation between each stream
temperature sensor and the sensor immediately downstream.

Region Stream Int(?;jc)e pt Sl(l)(l:z_f;)c A(fg) A(IOS CD)D
Cascade BEA 5.08 -2.74 0.66 0.19
Range BUL 6.15 -3.88 1.26 0.44
SUG 8.42 -0.66 1.16 0.61
Average 6.55 -2.43 1.03 0.41
Coast HEN 11.79 -1.07 0.30 0.31
Range IVE 11.93 0.18 0.21 0.15
RIC 12.10 0.91 0.17 0.15
WIL 12.42 2.12 0.36 0.21
XRA 12.26 0.79 0.42 0.16
Average 12.10 0.59 0.29 0.19

The three streams in the Cascade Range (underlain by volcanic lithology)
exhibited substantial longitudinal variability in stream temperature (Figure 2.3). Overall,
the site-level average daily standard deviation (SD) in stream temperature ranged from
0.19-1.84 °C (mean = 0.68 °C). Much of the variability could be attributed to distinct
locations where stream temperature decreased markedly in each of the three streams in
this region. For example, we observed abrupt declines in average daily mean stream
temperatures between two adjacent sensors of 2.0 °C in SUG, 3.5 °C in BEA, and 7.0 °C
in BUL (Figure 2.3). Interestingly, stream temperatures generally warmed slightly
between stream segments upstream from the locations of dramatic cooling. For example,

the average daily mean summer stream temperature at BEA increased from 5.4 to 8.2 °C
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between the first (furthest upstream sensor) and sixth temperature sensor (0.55 fractional
distance upstream), which represented ~50 % of the monitored distance (~400 m).
However, the average daily mean summer stream temperatures abruptly decreased to

4.7 °C (aloss of ~3.5 °C) over the next ~80 meters, between the sixth and seventh stream
temperature sensors (between 0.55 and 0.45 fractional distance upstream) (Figure 2.3).
We also noted that the variability in daily mean stream temperatures in BEA was
generally greater (SD: 1.3 °C) in the upper 400 m of the stream (i.e., above the segment
where temperatures cooled rapidly), relative to the lower 480 to 880 m of stream (SD:
0.39 °C). We observed similar patterns in summer stream temperatures in BUL and SUG,
although both streams had ephemeral sections, which went dry during portions of the

summer.

Comparatively, in the Coast Range, stream temperatures were more stable with no
strongly discernible downstream warming or cooling trends (Figure 2.3). Site-level
average daily standard deviations in stream temperature in the Coast Range ranged from
0.02-0.95 °C (mean = 0.28 °C). Generally, average daily mean stream temperatures
increased moving downstream (Table 2.4), with the exception of the stream temperature
at HEN, which cooled by 1.1 °C km™' (Figure A1). There were some sections of localized
cooling and reduced stream temperature variability present in HEN, IVE, WIL, and XRA
approximately mid-stream. For example, the average daily mean stream temperature
decreased 0.67 °C over 38 m between the fifth and sixth sensor location (from 0.64 to
0.55 fractional distance upstream) in HEN with a corresponding decrease in average daily
standard deviation of stream temperature of 0.34 °C (Figure 2.3). However, the largest
change in average daily mean stream temperatures observed moving downstream
between any two adjacent sites along the Coast Range streams was 0.91 °C in XRA
(between sensors 9 and 10, from 0.27 to 0.18 fractional distance upstream), which was
13 % of the maximum change observed in the Cascade Range streams (Figure 2.3). The
largest observed reductions in average daily mean stream temperature in the remaining
three streams in the Coast Range were 0.31 °C in IVE, 0.19 °C in RIC, and 0.64 °C in
WIL (Figure 2.3).
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Figure 2.3. Longitudinal distribution of stream temperatures measured along Coast
Range and Cascade Range streams during summer, 2018. Upstream distance is
normalized on the x-axis for comparison. The direction of flow is from left to right. Red
arrows indicate likely spring locations in the Cascade Streams. Locations shown without
data were either dry (D) throughout the summer or the sensor was missing during data
collection (M). Measured stream lengths vary from 300 to 1000 m.
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2.4.3: Stream thermal sensitivity

Our site-level linear regression models between air and stream temperature
revealed fine-scale spatial variability in stream thermal sensitivity to air temperature in
both study regions (Figure 2.4). In the Cascade Range streams, the median site-level
thermal sensitivity was 0.23 °C °C™!, ranging between 0.04-0.63 °C °C™! (R*> =0.11-0.85)
(Table 2.5). Interestingly, in BUL, the thermal sensitivity increased consistently from
0.27 °C °C! at the uppermost sensor to a maximum of 0.63 °C °C™! at the eighth sensor
(0.36 fractional distance upstream). However, the thermal sensitivity dramatically
decreased to 0.04 °C °C! at the next sensor downstream and stream temperature
generally remained decoupled from atmospheric controls across the bottom ~20 %

(starting at 0.27 fractional distance upstream) of the stream reach (Figure 2.4).

0.8

0.61

0.4 &
o = Stream
J0.2 BEA
‘b’ BUL
= SUG
Z08 HEN
2 IVE
"_:5:: RIC
50.6- WIL
= o XRA

0.4 o

0.2

10 09 08 07 06 05 04 03 02 01 0.0

Fractional Distance Upstream

Figure 2.4. Longitudinal trends in thermal sensitivity (linear regression slope, Equation
3) along Cascade Range (BEA, BUL, SUG) and Coast Range (HEN, IVE, RIC, WIL,
XRA) streams. Missing data points indicate sensors that went dry or regression models
that were not included in the final analysis. The largest value in HEN is characterized by
a sensor that went dry after 17 days. The x-axis is normalized for ease of comparison;
stream lengths are in Table 2.2.
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Similarly, in BEA the thermal sensitivity increased from 0.05 °C °C! at the
uppermost sensor to 0.31 °C °C! at the sixth sensor (0.55 fractional distance upstream),
before also decreasing dramatically to 0.06 °C °C™! at the seventh sensor (0.45 fractional
distance upstream) (Figure 2.4). The stream temperature in BEA also generally remained
decoupled from air temperature for the remainder of the monitored stream length, which

was similar to BUL.

In SUG, site-level thermal sensitivity decreased from 0.32 °C °C™! to 0.10 °C °C’!
over the first 328 m (to 0.64 fractional distance upstream). Thermal sensitivity in SUG
then increased from 0.10 °C °C'to 0.59 °C °C! over 150 m from the fifth to sixth sensor
(from 0.64 to 0.45 fractional distance upstream) before alternately decreasing to
0.28 °C °C! at 0.27 fractional distance upstream then increasing to 0.45 °C °C! at 0.18
fractional distance upstream. Thermal sensitivity values for each sensor location are

included in table A3 in the appendix.

Despite the variability in thermal sensitivity in the Cascade Range, the
distribution of thermal sensitivity values was skewed to values less than 0.2 (Figure
2.5A), and these locations generally had the coolest stream temperatures. For instance,
across the three Cascade Range streams, there was a strong, positive linear relationship
between site-level thermal sensitivity values and the average daily mean stream
temperature (R> = 0.79). Positive relationships also existed between site-level thermal
sensitivities and average daily maximum stream temperatures (R*> = 0.63), and average
diel stream temperature range (R? = 0.59) (Figure A4). In other words, warmer stream
segments were generally more coupled to air temperature, while cooler stream segments

were less coupled with air temperature.



"MO[JUI JOJEMPUNOIS paIenuddu0d pue d31eydsIp Sulids Jo suonedo] Aoy
$9JBOIPUI () UL A[OILO PAI AU, "SIN[BA L [OPOW PUB SIN[BA AJADISUIS [BULISY) [OAS[-93IS UdoMmIaq drysuone[or oy (g) -osuey
1580 U} pue d3urY IPLISL)) AY) Ul SWEAIIS JO SANIANISUIS [BULIY) JO uonnqrysip oy} surmoys jo[d urjoip () *s g d1nsig

(Do/D0) ApAIISTRS [eULIAY T,
80 90 L 0 00 aguey 180D aBuey apedse)
Loo"o FO'0
Ay 1se0]) & w
28uey aprIse]) v
15:
uolsay Ls70 FC'0
. . !
v »
L J s v m
® =
~ w
©n g
L0$°0"2 70 &
9/000=_4 = =
z a <
3
FSL0 Lop™~"
vV 2fuey 15B07) .
2Suey apeose)) .
L] woisayg
z Loo'T r8°0
(g (v

133



34

In the Coast Range, the median site-level thermal sensitivity was 0.33 °C °C™! and
ranged between 0.10-0.77 °C °C™! (R? = 0.11-0.93) (Table 2.5). Statistically, the median
thermal sensitivity in the Coast Range was greater than in the Cascade Range streams
(Wilcoxon Rank Sum test, p < 0.01, 95% CI: 0.039 — 0.171) (Table 2.5). Longitudinal
patterns in thermal sensitivity varied by stream, but generally increased moving
downstream in RIC and XRA (Figure 2.4). For instance, thermal sensitivity increased
from 0.20 to 0.53 °C °C! over 300 meters from mid-reach (0.55 fractional distance
upstream) to the bottom of RIC and from 0.26 to 0.49 °C °C™! over 210 m in XRA (from
0.27 fractional distance upstream to the bottom of XRA). Alternatively, longitudinal
trends in thermal sensitivity for streams HEN, IVE, and WIL did not show strong
increasing or decreasing trends. However, there were some stream segments in those
three streams where thermal sensitivity between proximate temperature sensors changed
rapidly. For instance, in WIL the thermal sensitivity increased from 0.10 to 0.37 °C °C"!
over 28 m (from 0.45 to 0.36 fractional distance upstream), then decreased again to
0.10 °C °C! over 56 m moving downstream starting at 0.18 fractional distance upstream.
The largest change in thermal sensitivity observed in the Coast Range streams occurred
mid-reach (0.45 fractional distance upstream) in HEN, where thermal sensitivity
increased from 0.18 to 0.77 °C °C-!' over 38 m and then decreased to 0.33 °C °C’';
however, this particular stream segment went dry 17 days after the start of monitoring
(June 18, 2018). Contrary to results in the Cascade Range, variability in site-level thermal
sensitivity values in Coast Range streams was not well explained by the average daily
mean stream temperature (R = 0.06), indicating that the most thermally insensitive

locations along Coast Range streams were not necessarily the coolest (Figure A4).
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2.5: Discussion

Our study in Northern California provided evidence that stream temperatures
during the summer low flow period were generally warmer, but exhibited less diel
variation, in Coast Range headwater streams compared to the Cascade Range.
Specifically, mean daily stream temperatures were ~4.7 °C warmer in the Coast Range
despite greater riparian canopy closure and air temperatures that were ~1.6 °C cooler than
in the Cascade Range (Table 2.3). Although stream temperatures were warmer in the
Coast Range relative to the Cascades, temperatures remained well within the range found
to be tolerable for many anadromous salmonids or amphibians, which inhabit the region

(Sloat & Osterback, 2013; Welsh, Hodgson, Harvey, & Roche, 2001).

Our observations in the Coast Range catchments, which occurred in the Caspar
Creek Experimental Watershed Study, were also consistent with stream temperature
measurements collected over eight years, between 1965-1990, from catchments in the
same region (Cafferata, 1990). For example, while we observed summer maximum
stream temperatures of 12.5 °C and diel variation of 0.9 °C, Cafferata (1990) reported
summer maximums of ~13.3—15.6 °C and diurnal fluctuations of 0.8 °C. Cool summer
stream temperatures in Coast Range streams have previously been attributed to the
insulating effect of the dense riparian canopy, high humidity, and coastal fog due to the
proximity to the Pacific Ocean (Cafferata & Reid, 2013; Lewis et al., 2000; Moore et al.,
2005a). In particular, a dense forest canopy cover, as observed in the Coast Range
(85 %), has been found to limit energy exchange across the stream-air interface and thus,
act as a first order control on the magnitude of stream temperature and thermal sensitivity

(Chang & Psaris, 2013; Simmons et al., 2014; Winfree et al., 2018).

Our measurements of the longitudinal variability in stream temperature also
indicated that the streams in both the Coast Range and the Cascade Range exhibited
complex thermal profiles (Fullerton et al., 2015). In other words, the longitudinal stream
temperature profiles across all our study streams included multiple discontinuities, with
sections of increasing and decreasing temperatures (Figure 2.3). However, there was
greater longitudinal thermal heterogeneity in streams underlain by volcanic lithology

(Cascade Range) than in streams underlain by sedimentary lithology (Coast Range). In
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the Cascade Range, stream temperatures appeared to warm slightly moving downstream
but cooled dramatically—dropping by as much as 2.0 to 7.0 °C, at discrete locations.
Overall, this resulted in cooler average stream temperatures, despite warmer summer air
temperatures, in the Cascade streams compared to the Coast Range streams. Similar
discontinuities have previously been related to discrete groundwater discharge locations,
which can thermally buffer streams against daily and seasonal temperature fluctuations
(Snyder et al., 2015; Webb et al., 2008). Reduced diel stream temperature variation in the
Cascade Range streams was also suggestive of the presence of concentrated groundwater
discharge (Harrington, Hayashi, & Kurylyk, 2017; Surfleet & Louen, 2018). In part, this
was expected, as the Cascade Range is underlain by highly fractured basalt bedrock,
which has previously been shown in the Oregon Cascades to have high water holding
capacity and high permeability, resulting in the majority of precipitation draining to
groundwater and reemerging as cool springs (Jefferson, Grant, & Rose, 2006; Tague et

al., 2007, 2008).

While the thermal buffering from these apparent locations of cool groundwater
discharge extended several hundred meters downstream in two of our study streams in
the Cascade Range (BEA and BUL), they were less pronounced in our other study stream
(SUQG). Thus, further research could provide valuable insights into how far downstream
the influence of discrete groundwater discharge locations may persist, providing
important cold-water refuges (Torgersen, Price, Li, & Mclntosh, 1999). For example, in
the Shasta River, a tributary to the Klamath in Northern California, Nichols, Willis,
Jeffres, and Deas (2014) found that the thermal influence of spring discharge persisted
downstream for 23 km, and suggested that understanding similar patterns was critical for
managing cold-water fish habitat. Downstream cooling has been observed in other spring
dominated systems (Harrington et al., 2017; Leach & Moore, 2011; Roon et al., 2021;
Story et al., 2003; Surfleet & Louen, 2018), and has often been associated with the
location of fractures or faults along underlying bedrock. Depending on the volume of
groundwater discharge at these locations, stream temperatures may be modified for long

distances downstream, with potentially important implications for aquatic habitat.
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While the thermal profiles in the Coast Range streams were also complex, the
downstream temperature variability was less dramatic than in the Cascade streams. The
comparatively thin, friable soils in the Coast Range likely contributed to summer
baseflow from spatially continuous shallow subsurface sources or perched areas of
saturated soil on most of the streams (Keppeler & Brown, 1998), rather than discrete
discharge from deep aquifers (Figure 2.6). Lateral inflow from a shallow layer at the base
of the soil profile has previously been observed as the primary source of baseflow and a
dominant control on stream temperature in a Coast Range watershed in the PNW (Moore
et al., 2005b). Additionally, the step-pool geomorphology in the Coast Range streams
may have contributed to hyporheic down-welling or sub-surface inter-gravel flow, which
can contribute to greater thermal stability (Kasahara & Wondzell, 2003; Peterson &
Sickbert, 2006).
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Our results also highlighted the spatial variability in atmospheric control on
stream temperature between the Coast Range and Cascade Range streams. Given the
regional differences in climate and forest cover, we expected the influence of air
temperature on stream temperature (i.e., thermal sensitivity) would be greater in the
Cascade Range streams. However, streams were less thermally sensitive in the Cascade
Range by 0.039-0.171°C °C! compared to the Coast Range streams. Indeed, many
stream segments along the Cascade Range streams were insensitive to changing air
temperatures, despite large diel variability in air temperature. These low thermal
sensitivities indicated a decoupling of atmospheric control on stream temperature that
was likely due to the concentrated groundwater discharge from deep aquifers. Site level
thermal sensitivity values in Cascade Range streams revealed that values less than
0.2 °C °C"! generally corresponded to locations with the coolest and least variable stream
temperatures and likely, this threshold separated groundwater dominated versus surface
flow dominated portions of the streams (Kelleher et al., 2012; O’Driscoll & DeWalle,
20006).

The importance of lithology as a first order control of groundwater contributions
and stream thermal sensitivity was previously illustrated by Tague et al. (2007), who
compared stream thermal sensitivities between spring dominated streams draining
resistant volcanic lithology in the high Cascades and shallow sub-surface flow dominated
streams draining less resistant lithology in the mid-Cascades of Oregon. They determined
that spring dominated systems draining resistant lithology were less thermally sensitive
than lower elevation shallow sub-surface flow systems due to differences in the
magnitude of streamflow sourced from the subsurface. Indeed, headwater streams
draining volcanic lithology and deep soils typically have a large proportion of summer
baseflow generated from groundwater (Segura et al., 2019) that is derived from prior
snowmelt or heavy rains (Tague et al., 2008). These inputs can dampen atmospheric
sensitivity at discrete groundwater discharge locations, where the response to
atmospheric warming may lag or mute air temperature signals (Briggs et al., 2018b).
Briggs et al. (2018c) also determined that the magnitude of groundwater discharge varied

longitudinally along a stream with the soil depth to bedrock and influenced the
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attenuation of stream temperature signals by groundwater. The authors also determined
that shallow aquifer sourced groundwater displayed considerable sensitivity to the
downward propagation of heat derived from surficial advective and conductive sources.
We posit that we observed similar drivers in our study. It is likely that the Cascade Range
streams, characterized by comparatively deeper soils than the Coast Range, were more
thermally buffered from atmospheric controls on stream temperature. Alternatively, the

stream and air temperature signals were more closely coupled in the Coast Range.

There have been many previous studies that have assessed stream thermal
sensitivity; however, the majority have occurred at a regional or larger scale across
multiple river basins, rather than a headwater scale (Table 2.6). Despite differences in
scale, several of these previous studies have illustrated low thermal sensitivity in
groundwater dominated systems (Kanno, Vokoun, & Letcher, 2014; Kelleher et al., 2012;
Segura et al., 2015; Tague et al., 2007), similar to our study. Previous studies also found a
similar strength (R?) in their linear regression relationships between stream temperatures
and air temperatures (Hilderbrand et al., 2014; Segura et al., 2015; Snyder et al., 2015), as
we found in our study, which was indicative that air temperature was only one controlling
factor of stream temperature in headwater streams. For instance, baseflow index, a
measure of groundwater contributions to flow, and stream size were two variables found
to control stream thermal sensitivity in Pennsylvania streams (Kelleher et al., 2012),
while drainage area and channel slope exerted the strongest control in regional thermal
sensitivity studies (Segura et al., 2015; Winfree et al., 2018). Lisi et al. (2015) observed
thermal sensitivity 5—8-times greater in low elevation, low gradient, rain dominated
streams compared to high elevation, steep, snowmelt dominated streams due mainly to
differences in slope and snowmelt contributions. Others have used measures of
accumulated degree days above mean summer air temperature to act as a proxy of
groundwater influence with success in stream temperature prediction to generate thermal
sensitivity values (Snyder et al., 2015). Similarly, spatially variable groundwater inputs
controlled thermal sensitivity magnitude (Kanno et al., 2014; O’Driscoll & DeWalle,
2006) and variability (Trumbo et al., 2014) elsewhere. In the present study, it is likely

that site-level differences in riparian vegetation, discharge, and precipitation inputs
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explain majority of the remaining variation in stream temperature, but our monitoring did

not allow us to consider these factors at a site-level resolution.

Table 2.6. Results from our study and other studies that have quantified stream thermal
sensitivity to air temperature at a range of spatial scales.

Thermal
Sensitivity Location Temporal Reference
Range Resolution
(°C oc-l)
8 streams in Northern .
0.04-0.77 California, US Daily Present study
12 sites in a Pennsylvania O’Driscoll &
0.19-0.67 watershed Weekly DeWalle, 2006
6 sites across northern . :
0.39-0.61 latitudes of the US Daily Simmons et al., 2014
0.35-1.09 43 streams internationally Daily, Morrill et al., 2005
Weekly
0.20-0.65 OO borcal streams in SW Daily Lisi et al., 2015
Alaska
. . Daily,
0.02-0.93 57 sites across Pennsylvania Kelleher et al., 2012
Weekly
78 sites in Shenandoah .
0.10-0.82 National Park, Virginia, US Daily Snyder et al., 2015
74 sites in the Columbia River  Daily, :
0.10-0.81 Basin, US Weekly Chang & Psaris, 2013
157 sites across US, Air Weekly,
0.13-1.25 Temp > 0 °C Monthly Segura et al., 2015
0.20-1.14 104 sites across US PNW Weekly Mayer, 2012
0.02-109 43 sites across the Oregon Daily Tague et al., 2007
Cascades
0.13-0.79 46 sites across Maryland, US ~ Daily Izrlall(i‘erbrand etal,
0.01-0.58 43 coastal streams in SW Daily Winfree et al., 2018
Alaska
049-108 Ol sitesacrossthe Southeast ;o0 Caldwell et al., 2015

Us

2.6: Conclusions

We compared the longitudinal thermal regimes and thermal sensitivity of eight

headwater streams across two distinct regions of Northern California. In general, stream

and air temperatures were less coupled in streams underlain by volcanic lithology
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compared to streams underlain by sedimentary lithology. We posit that the decoupling of
stream temperature from air temperature control in the Cascade Range streams was due
to cool groundwater discharge, which occurred predominantly in streams underlain by
volcanic lithology. Interestingly, we also observed less variability in longitudinal stream
temperatures in the Coast Range streams— underlain by sedimentary lithology—despite
a slight warming in the downstream direction. This was likely due to greater sensitivity of
the comparatively warmer, shallower subsurface sources in the Coast Range, resulting in
a greater coupling to atmospheric temperatures. Our study revealed the complexities in
thermal regimes in headwater streams and the potential importance of lithology.
Improved understanding of the dominant controls on thermal regimes of small headwater
streams will become increasingly critical in the future. This knowledge is necessary to
improve projections of aquatic habitat resiliency or vulnerability to pressures from
climate change or shifting disturbance regimes, where land management decisions may
become increasingly complex. As such, future research should continue to quantify the
comparative roles of streamflow, groundwater, and streamside vegetation on fine-scale
temperature dynamics and aquatic habitat viability in headwater streams across diverse
regions. Additional research is also needed on downstream thermal propagation from

spring dominated and shallow subsurface dominated headwater catchments.
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Chapter 3: Characterizing stream temperature hysteresis in forested headwater
streams: A preliminary investigation.

3.1: Abstract

Stream temperature is a critical water quality parameter that influences many
aspects of aquatic systems. However, there have been few attempts to assess how stream
temperature changes during storm events and in response to shifts in runoff generation.
Thus, our objectives were to use hysteresis metrics to assess the relationship between
stream temperature and stormflow across ten forested headwater catchments in Northern
California during the 2020 water year. We instrumented each stream with 12 evenly
distributed thermistors and four air temperature sensors. Our goal was to quantify the
magnitude and variability of stream temperature hysteresis during rain events across
seasons within and among catchments. Additionally, we sought to determine whether
catchment topographic metrics (upslope accumulated area, topographic wetness index,
flow weighted slope) could explain the stream temperature response to precipitation
inputs. We hypothesized that the direction of hysteresis would vary across seasons due to
changes in meteorological conditions and that the stream locations most hydrologically
connected to the hillslope (as predicted by topographic indices) would exhibit the greatest
hysteresis due to lateral throughflow inputs. Our results indicate that the stream
temperature response to stormflow is seasonally variable and generally exhibits
clockwise hysteresis during the summer and spring when air temperatures are warmer
than stream temperatures and anti-clockwise hysteresis during the fall and winter when
air temperatures are cooler than stream temperatures. In addition, the stream temperature
response to stormflow was the most variable across these 10 catchments during the late
summer and early fall, when catchment-scale wetness conditions and streamflow were
low. As the wet season progressed, stream temperature behavior across these 10
catchments became more similar, and remained coupled through the late spring. The
magnitude and direction of stream temperature hysteresis was well correlated with the
gradient between stream and air temperatures at the start of the event (p = 0.49), and air
temperature change during the storm rising limb (p = -0.49), indicating the potential role

of regional meteorological conditions on stream temperature change during storm events.
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None of the derived topographic metrics describing the preponderance of saturated areas
and lateral inputs to streamflow were correlated with stream temperature change during
events, potentially because subsurface topography and seasonally variable catchment
wetness conditions could not be properly characterized with static metrics describing
surface topography. Overall, these results indicate seasonally variable stream temperature
behavior during storm events that become regionally synchronous as catchment moisture

conditions increase during the wet season.
3.2: Introduction

Stream temperature is a critical water quality parameter that drives dissolved
oxygen solubility (Fellman, Hood, Dryer, & Pyare, 2015; Loperfido et al., 2009; Ozaki et
al., 2003), influences aquatic habitat (Brewitt et al., 2017), and important life history
events for sensitive aquatic species such as salmonids (Caissie, 2006; Hester & Doyle,
2011; MacDonald et al., 2014b). In forested headwaters, stream temperature change is the
result of energy exchange across the air-water interface, between the stream bed and
banks, and through advective transport via groundwater or hyporheic upwelling (Moore,
Spittlehouse, & Story, 2005; Webb, Hannah, Moore, Brown, & Nobilis, 2008). Recent
literature has elucidated the influence of groundwater inflow (Briggs et al., 2018c; Larsen
& Woelfle-Erskine, 2018; Snyder et al., 2015), hyporheic exchange (Briggs, Lautz,
McKenzie, Gordon, & Hare, 2012; Surfleet & Louen, 2018; Wondzell & Gooseft, 2013),
and hillslope derived throughflow (Leach & Moore, 2015, 2017; Uchida et al., 2002) on
stream temperature variability across a range of scales. However, research assessing
stream temperature change during storm events in forested headwaters is limited (Hebert
et al., 2011), and there have been few dedicated efforts assessing the influence of storm
events on the stream longitudinal thermal regime. For instance, during storm events,
quickflow from shallow subsurface stormflow or preferential soil channels can strongly
influence stream temperatures (Lange & Haensler, 2012; Leach & Moore, 2014; Subehi
et al., 2010). This is despite precipitation heat flux often representing only 1-2% of the
total heat flux reaching the stream (Hebert et al., 2011; Webb & Zhang, 1997). Others
have linked seasonally variable antecedent moisture conditions (Lange & Haensler, 2012;

Subehi et al., 2010), meteorological conditions (Herb et al., 2008; Somers et al., 2016),
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and catchment topography (Leach et al., 2017; Subehi et al., 2010) to stream temperature
dynamics during storm events. This indicates a seasonal response that likely varies with
both regional meteorological and catchment-scale topographic characteristics such as
local precipitation patterns (Croghan, Van Loon, Sadler, Bradley, & Hannah, 2019) and
catchment slope (Subehi et al., 2010).

Because stream temperature is non-reactive, naturally occurring, and relatively
inexpensive to monitor, it has potential utility as a tracer to understand surface water-
groundwater interactions and subsurface hydrologic connectivity (Constantz et al., 2003;
Leach et al., 2017; Oware & Peterson, 2020; Ploum et al., 2018; Shanley & Peters, 1988;
Uchida et al., 2002). For instance, Uchida et al. (2002) monitored stream temperatures in
a steep forested catchment in Japan to differentiate between contributions to stormflow
from water at the soil-bedrock interface and shallow bedrock, effectively illustrating the
sources of water contributing to stream flow during storms. Similarly, distributed
temperature sensing technology was used to locate discrete areas of groundwater inflow
(Leach et al., 2017; Ploum et al., 2018), with the hope of better understanding hydrologic

connectivity at the reach scale.

Runoff generation in steep forested headwater catchments is often controlled by
physiographic characteristics, such as geology and topography (Gabrielli et al., 2012;
Gomi et al., 2010; Hangen et al., 2001; Zimmer & McGlynn, 2017) and by temporal
variability in water inputs that drive catchment hydrologic storage (Amatya et al., 2016;
Dralle et al., 2018; Sidle et al., 2000). During a storm event, precipitation is partitioned
into one of several pathways depending on catchment rainfall intensity (Detty &
McGuire, 2010), soil infiltration capacity (Gomi et al., 2010), antecedent moisture
conditions (Lange & Haensler, 2012; Radke et al., 2019), and overall catchment storage
(Zimmer & McGlynn, 2018, 2017). In forested catchments along the Northern California
Coast, soil hydraulic conductivity is typically high and rainfall intensities low such that
overland flow is rare (Keppeler & Brown, 1998), except on bedrock outcrops or areas
with extremely shallow soils (Uchida et al., 2002). Therefore, subsurface flow pathways
commonly dominate during storm events, but the exact partitioning of water inputs into

shallow subsurface flow and deeper groundwater flow paths may vary depending on soil
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characteristics, topography, and storm characteristics (Detty & McGuire, 2010; Gomi et
al., 2010; Rinderer et al., 2014; Van Meerveld et al., 2015).

Hysteresis analysis has been used to characterize the transport of water quality
constituents in catchments during storm events (Aguilera & Melack, 2018; Mistick &
Johnson, 2020; Vaughan et al., 2017). Water quality hysteresis describes the phenomena
where a measured constituent has a different relationship with or lags behind discharge
during a storm event. This behavior is commonly separated by rising and falling limbs of
the hydrograph, where transport behavior of the constituent of interest from the
catchment varies between the two. Specifically, hysteresis metrics have recently been
developed to easily quantify the direction, slope, and size of hysteretic loops and make
comparisons between storms and catchments (Liu et al., 2021; Lloyd et al., 2016a,
2016b). During storm events or snowmelt episodes, stream temperature variability with
streamflow exhibits hysteresis behavior (Blaen et al., 2013; Kobayashi et al., 1999).
Hysteresis behavior has also been observed in the relationship between stream
temperature and precipitation inputs (Kobayashi et al., 1999; Subehi et al., 2010). For
instance, clockwise hysteresis behavior during storms when air temperatures are greater
than stream temperatures may indicate thermal transfer from shallow quickflow sources
that warm the stream water during the rising limb of the hydrograph. In addition,
hysteresis loops with a positive slope likely indicate flushing of heat from the catchment
that causes stream temperatures to rise towards the hydrograph peak, while loops with a
negative slope indicate dilution of heat from the catchment (i.e., from deep-sourced
groundwater or direct channel precipitation) (Kobayashi et al., 1999). Quantifying stream
temperature hysteresis may provide insights into how headwater streams respond to

storm events across seasons and catchment characteristics.

Forested headwaters represent the landscape features with the strongest
connection between terrestrial and aquatic elements (Freeman et al., 2007; Schlosser,
1991), and are more reactive to inputs of precipitation than downstream reaches (Wilby et
al., 2015). Thus unsurprisingly, there is continued interest in understanding the
responsiveness of headwater channels to perturbations at the management-relevant reach

scale. For instance, there have been recent calls for riparian forest management practices
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to consider the variable hydrological connectivity inherent to forested headwaters
(Kuglerova et al., 2014; Laudon et al., 2016; Tiwari et al., 2016), such as by
incorporating wider riparian buffers near variable source areas (Erdozain et al., 2020;
Roon et al., 2021). Indeed, certain locations along headwater channels in boreal systems
have been measured to provide disproportionate contributions of runoff to streamflow
given local topography and soil conditions. These discrete riparian inflow points (DRIPS)
(Ploum et al., 2018) can have a large influence on stream water chemistry and
temperature (Erdozain et al., 2020; Lowry et al., 2007), and require additional study to
determine their influence on stream temperature during storm events. Topographic
metrics, such as upslope accumulated area (UAA), topographic wetness index (TWI), and
flow weighted slope (FWS) that theoretically describe the location of saturated soil and
subsurface water flow paths have been used successfully to locate areas of strong lateral
groundwater influence in boreal regions (Leach et al., 2017) and elucidate topographic
control on stream temperature in southern Alaska (Callahan et al., 2015). However, such
an analysis has not been undertaken in steep, temperate conifer forests like the coast
redwood (Sequoia sempervirens) dominated North Coast range of California, USA.
These metrics could potentially provide insight into whether some areas respond
differently than others to precipitation inputs along headwater streams. This has
important implications for quantifying available habitat and refugia to aquatic ecosystems
and in understanding how forest harvesting activities or natural disturbance (windthrow,
debris flows) influence runoff generation and the potential influence on water quality

downstream.

Our objectives were to improve understanding of how forested headwaters
respond to storm events by analyzing data collected from an array of distributed
temperature sensors across ten catchments. To achieve our objectives, we addressed the

following questions:

1. How does stream temperature hysteresis vary in forested headwater streams

across seasons?

2. What storm, topography, or meteorological characteristics influence stream

temperature hysteresis during storm events?
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We used recently developed metrics to quantify the magnitude and direction of
hysteresis in the streamflow-stream temperature relationship and topographic metrics of
hydrological connectivity to compare the response to 23 storm events paired across ten
headwater catchments across the Northern coast range of California, USA during the
2020 water year. Our intent was not to use this analysis to infer variable runoff generation
mechanisms across these ten catchments, but to provide a preliminary exploration into
how stream temperature hysteresis varies across headwater catchments, storm

characteristics, and season.
3.3: Methodology

3.3.1: Study Locations

We collected data along ten headwater streams, which all drain to the Klamath
River in the Northern California Coast Range, USA (Figure 3.1). The catchments ranged
in area from 21 to 63 ha and were located in two distinct elevation ranges (Table 3.1).
Five study streams (1 to 5) were located along the west fork of Tectah Creek between
425-500 m elevation. The other group of five streams (11, 13, 14, 15, 18) were located
along McGarvey Creek at elevations below 190 m. The two groups of study catchments
were separated by approximately 25 km. Stream valleys are V-shaped with considerable
channel incision and steep slopes (19-31°) (Woodward, Lamphear, & House, 2011). The
streams also have narrow riparian areas, resulting in strong confinement and coupling
between the streams and hillslopes. All ten streams are characterized as perennial, step-
pool systems (Fritz et al., 2020; Montgomery & Buffington, 1997) with a few small
cascades. As such, most of the monitored stream lengths were perennial during the study,
with the exception of mid-reach in streams 1, 3, and 14, and the most upstream portion of
streams 11 and 13, which were dry during the late summer months. The monitored
portions of these streams have average active widths less than two meters, with average

stream channel slopes along studied reach lengths ranging from 8-15° (Table 3.1).
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Climate is characterized as temperate and maritime with a distinct wet-dry
seasonality and considerable influence from coastal fog (Dawson, 1998). Summers are
warm and dry and winters are mild and wet, with average annual air temperatures
between 11 and 12 °C (PRISM Climate Group, 2021). The majority of precipitation
occurs as rainfall between October and May, with an average annual rainfall of 2,900 mm
in Tectah Creek and 2,000 mm in McGarvey Creek (PRISM Climate Group, 2021)
(Figure 3.2). Accordingly, streamflow reaches an annual peak during mid-winter and an
annual low during late summer. Vegetation consists primarily of 30—60-year-old second-
growth Douglas-fir (Pseudotsuga menziesii) and coast redwood (Sequoia sempervirens),
with western red cedar (Thuja plicata), and western hemlock (7suga heterophylla)
occurring at lower densities, and red alder (A/nus rubra) and tanoak (Notholithocarpus
densiflorus) becoming frequent in riparian areas. Riparian canopy closure along the
streams is very high (above 90%) and similar across streams (Table 3.1). Soils are well-
drained gravelly clay loams of the Coppercreek and Sasquatch series, with depths
typically between 70 and 100 cm (Soil Survey Staff, NRCS, 2016). Field observations
indicate increasing soil clay content with soil depth, and the uppermost soil layers are
composed of extremely well drained organic detritus, likely leading to the presence of
soil macropores and pipes that quickly transmit runoff as shallow subsurface stormflow
to the stream (Amatya et al., 2016; Keppeler & Brown, 1998). The lithology consists of
marine-derived sedimentary and metasedimentary rock of the Franciscan Complex

(Woodward et al., 2011).
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3.3.2: Data Collection

To quantify stream and air temperature, we installed 16 thermistors (Onset HOBO
TidbiT v2, Bourne, MA; accuracy + 0.21 °C) in each study stream. This included 12 in-
stream sensors and four air temperature sensors, which were spaced approximately every
28 meters (except in stream 14, see Table 3.1) along each stream (Figure 3.1). Data was
collected at a 15-minute resolution. Stream thermistors were affixed along the thalweg of
the stream in sections of white PVC to minimize solar influences. We also drilled holes in
the PVC to allow adequate mixing of stream water across the sensor. The four air
temperature sensors were also enclosed in sections of white PVC and affixed either to
rebar or trees adjacent to the stream channel at the top, bottom, and two midpoints of
each stream. Stream and air sensor locations were recorded in Avenza Pro (version 3.14)

on a Samsung Galaxy Tab Active2 Tablet (estimated accuracy + 10 meters in closed

canopy).

We also measured stream stage at the downstream end of each stream with a
pressure transducer (Levelogger Edge, Model 3001. Accuracy: £ 0.05%, Solinst Canada
Ltd., Georgetown, ON, Canada) housed in a PVC stilling well. A barometer (Barologger
Edge, Model 3001. Accuracy: + 0.05 kPa. Solinst Canada Ltd., Georgetown, ON,
Canada) was placed at the outlet of streams 1 and 11 to quantify atmospheric pressure for
compensation of stream stage. Manual measurements of stream stage were taken with a
ruler at the base of each stilling well to the nearest half centimeter during 5 field visits
(approximately every 2 months) to derive continuous stage data from the pressure

transducers.

Discharge was estimated during a range of flow conditions using salt dilution
gauging (Moore, 2005) to develop a stage-discharge relationship and calculate a
timeseries of discharge. However, only a few salt dilution measurements (five to seven)
were conducted at the time of this analysis, mainly during low flows, and prevented
development of a robust rating curve for each of the ten catchments in our study. For this
reason, we focused our analysis on relationships between stage and stream temperature.
However, we also completed a supplementary analysis with discharge from the single

most reliable rating curve (Figure AS) to assess the sensitivity of the hysteresis indices
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we calculated. Statistically, there was no evidence that the hysteresis indices derived
using a time series of discharge were different than those derived from a timeseries of

stage (Figure A6, A7).

We also installed two weather stations (Onset HOBO U30 Data Logger, Bourne,
MA) in central locations during summer 2019 to quantify precipitation, air temperature,
solar radiation, relative humidity, soil moisture, air pressure, and wind speed direction.
The weather stations were located in central locations—within 3 km of all study
steams—to each of the two major groups of catchments (Figure 3.1). Precipitation data
was collected via an Onset tipping bucket rain gauge (model S-RGB-M002, Onset,
Bourne, MA). Solar radiation data was collected with an Onset pyranometer (model S-
LIB-MO003, Onset, Bourne, MA). Air temperature and relative humidity were collected
via an Onset Temp/RH probe (model S-THB-M002, Onset, Bourne, MA). Soil moisture
was monitored at 10, 30, and 60 cm depths at both weather stations with Onset soil
moisture probes (model S-SMD-MO005, Onset, Bourn, MA). Wind speed and wind
direction were monitored using Onset sensors (model S-WSB-M003 and S-WDA-M003,
respectively, Onset, Bourne, MA). Air pressure was monitored with an Onset barometer
(model S-BPB-CM50, Onset, Bourne, MA). All data were collected at a 15-minute

resolution.

3.3.3: Data Analysis

We focused our analysis of stream temperature change during storm events on
events that occurred during the wet season of the 2020 water year (October 1, 2019—June
15, 2020), but also included the first significant summer storms, which occurred in
September 2019. Individual storm events were identified if there was at least 6-hours
between event tips in the precipitation data (Driscoll, 1989). Initial analysis was limited
to storm events with a minimum depth of 10 mm, as this depth of rainfall was visually
determined as the threshold of rainfall necessary to achieve an in-stream response (i.e., a
change in stream stage). This yielded 40 storm events for the Tectah Creek study area and

38 events for the McGarvey Creek study area.
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Prior to storm event separation, stream and air temperature data were visually
inspected to remove periods when sensors were not submerged or behaving abnormally.
To do this, we visually assessed and compared the diel temperature range of stream
temperature and adjacent air temperature sensors to discern periods when sensors were
dry or removed from flow (Campbell et al., 2013; Sowder & Steel, 2012). We also relied
on visual inspection and field notes from routine field visits to help identify periods when
stream segments may have been dry. Periods of data during the study period when

evidence suggested stream drying were removed.

Hydrograph recession was assumed to end when stream stage reached the stage
value closest to what it was at the beginning of rainfall by minimizing the difference
between the initial stage value and each subsequent stage value, within twice the storm
duration following the end of each storm event. Therefore, storm duration was defined as
the time from the onset of the first tip in the precipitation data to the time of hydrograph
recession. Any storm event where stream stage did not recede to less than half the
maximum stage before the onset of the next storm was excluded to constrain our analysis
to storms with hydrographs that are not influenced by succeeding events. This resulted in
between 13 and 32 storms in McGarvey streams, and 17 and 27 storms in Tectah streams
being carried forward for initial analysis (Figures A7 to A16). Due to equipment failure,

stage data was only available in stream 13 for storms prior to January 24, 2020.
3.3.3.1: Storm hysteresis behavior

We used hysteresis analysis to quantify the event-based temporal relationship
between stream temperature and stream stage. We also used the analysis to provide a
means to quantitatively assess how stream temperature in headwater catchments responds
to precipitation inputs and changes in streamflow across seasons (Subehi et al., 2010).
Hysteresis loops can be used to describe the shape, magnitude, direction, and slope of the
stream temperature-stage relationship during storm events, where the slope of the loop
and rotational direction (clockwise or anti-clockwise) may be used to detect different
flow pathways that contribute runoff during events (Aguilera & Melack, 2018; Evans &
Davies, 1998). The hysteresis index (HI) proposed by Lloyd, Freer, Johnes, & Collins

(2016) was used to assess variable stream temperature responses to precipitation events
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among streams and through seasons. This HI is attractive for hysteresis analysis because
it is constrained between 1 and -1, with positive values associated to clockwise hysteresis
and negative values denoting anti-clockwise hysteresis. Clockwise (Anti-clockwise)
direction indicates stream temperatures are warmer (cooler) on the rising limb than the
falling limb of the storm hydrograph. The magnitude of the HI corresponds to the
‘fatness’ of the loop, where hysteresis loops with HI values close to |1| have a greater area
than those with HI values close to |0]. This index requires normalizing flow (stage)
(Equation 3.1) and temperature (Equation 3.2) values for each storm to make
comparisons possible among storms and catchments:

Qi — Omin

Qmax - Qmin

Normalized Q;(stage) = (3.1)

T; — Ty
Normalized T; = ——— (3.2)
Tmax - Tmin
where Q; is the stream stage at time I, Qi and Q4 are the minimum and
maximum stage measured over the storm event, T; is the stream temperature measured at

time i, and T};,;, and T, are the minimum and maximum stream temperature measured

over the storm event.

The HI (Equation 3.3) is computed by finding the difference between temperature
values on the rising and falling limb of the hydrograph for even intervals of the change in
stage. This involves splitting the time series of stage and stream temperature for each
storm into two sections, one prior to the peak stage, and one after the peak stage value.
We used 2% intervals of normalized stage to compute differences in stream temperature
on the rising and falling limb for each storm (as in Vaughan et al., 2017). The average of

these differences for each storm event is the HI.

HI = Z(TRL_normalizedn_ TFL_normalized) (33)

where Try, normatizea 15 the normalized temperature value at an interval of
normalized stage on the rising limb of the hydrograph, Tz, yormatizeq 18 the normalized

temperature value at the same interval of normalized stage on the falling limb, and n is
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the number of rising limb-falling limb pairs. An HI value was calculated for every stream
temperature monitoring location that was submerged at the start of the event along each

stream.

We also calculated the flushing index (FI) to quantify whether stream temperature
increased or decreases during the rising limb of the storm hydrograph (Butturini, Alvarez,

Bernal, Vazquez, & Sabater, 2008; Vaughan et al., 2017) (Equation 3.4):

FI = Tpeak_normalized - Ti_normalized (3-4)

where Tpeak normatizea 1 the normalized temperature value at the hydrograph
peak, and T; ,0rmatizeq 1 the normalized temperature value at the onset of precipitation.
Similar to the HI, FI is also constrained between -1 and 1. A positive FI indicates stream
temperatures increase on the rising limb of the event and heat is delivered (or flushed) to
the stream. When FI is negative, stream temperatures decrease during the rising limb,
indicating heat is lost (or diluted) from the stream. A FI value of 1 indicates that peak
stream temperatures coincide with the peak stage value during an event. For analysis of
HI and FI values, any storm event that had computed HI and FI values from less than six
of the ten catchments was removed from the analysis to prevent our results from being
biased towards certain catchments. This resulted in up to 23 paired storm events across

six or more of the ten catchments being analyzed (Table A4).
3.3.3.2: Topographic analysis

Topographic metrics including upslope accumulated area (UAA), topographic
wetness index (TWI), and flow weighted slope (FWS) were calculated for each stream
temperature monitoring location. This was done to assess whether the magnitude and
direction of hysteresis metrics describing the stream temperature response to storm events
could be explained by indices that relate surface topography to runoff generation
processes (Callahan et al., 2015; Leach et al., 2017). A primary assumption of all three
metrics is that subsurface hydrologic flow pathways reflect surface topography. This may
not be a valid assumption in areas with lithology characterized by extensive bedrock
fractures, complex soil structure, or where bedrock and surface topography are dissimilar

(Freer et al., 2002; Gabrielli et al., 2012; Genereux et al., 1993).
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UAA is defined as the area of land draining to a single point on the stream
channel from either side of the stream. For this analysis, we calculated UAA as the sum
of the area draining from both sides of the stream (e.g., the drainage area at each stream
temperature sensor location). TWI relates flow accumulation values and local slope for

each DEM cell as (Equation 3.5):

UAA;

where TW 1, is the topographic wetness index at each DEM grid cell, UAA; is the
flow accumulation area per unit contour width (cell width; m), and £; is the grid cell
slope (°) (Beven & Kirkby, 1979). Values with a high TWI are topographically predicted
to remain saturated longer than those areas with low values of TWI, and thus may
represent areas where groundwater levels are higher and therefore more responsive to
precipitation inputs. We computed two values of TWI for each stream temperature
monitoring location: the point value and an average value for the entire upslope

accumulated area (as in Rinderer, Van Meerveld, & Seibert, 2014).

Flow weighted slope (FWS) is an alternative metric to the TWI that integrates
local slope and flow accumulation values for each DEM cell. FWS is the sum of the
product of the slope and flow accumulation value for each pixel in the area of interest
divided by the sum of the flow accumulation of all pixels in the area of interest (Callahan
et al., 2015; Walker, King, Whigham, & Baird, 2012). FWS is calculated as (Equation
3.6):

FWS = ) (BixFA)/ ) (FA) (3.6)

where FWS is the flow weighted slope, FA; is the flow accumulation value for
each cell in the area of interest (m?), and f; is the grid cell slope (°). FWS values reported
herein correspond to each stream temperature monitoring location. Low FWS values
indicate an upslope area with a lower gradient and higher topographically predicted
wetness than locations with higher FWS values (Callahan et al., 2015; Walker et al.,
2012).
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Calculations were carried out using 0.25-meter resolution digital elevation models
(DEMs) for both study areas in ArcMap 10.8.1 (ESRI®, Redlands, CA). The DEMs were
first preprocessed by coarsening to 1-meter resolution to remove minor topographic
discrepancies and by filling sinks (Wang & Liu, 2006). The Deterministic 8 method was
used to calculate a flow accumulation grid and compute UAA (O’Callaghan & Mark,
1984), and TWI was calculated using the Topographic Wetness Index tool within the
TauDEM toolbox for ArcMap (Tarboton, 1997). To resolve differences between GPS-
recorded locations of stream temperature sensors and their actual location in the field, we
first assessed the distribution of differences between GPS-derived sensor locations and
the flow accumulation derived stream channel (average difference = 2.1 meters, SD =2.0
meters). Then, we snapped GPS-derived sensor locations to the nearest location on the
DEM derived stream channel. We assumed that because, on average, the difference
between GPS-derived sensor locations and snapped sensor locations to the channel were
much less than the stated GPS accuracy (+ 10 meters), these snapped locations
represented the best estimate for the actual sensor locations on the DEMs we utilized. To
provide an upper and lower bound on the potential true value of each topographic metric
at each sensor location, we calculated average values of UAA, TWI, and FWS for all cell
locations on the stream channel within a three-meter radius of each snapped sensor
location. Values of all three topographic metrics from within this three-meter radius were
used to compute average point values for UAA, TWI, and FWS that were used as
predictors in a correlation analysis. Locations along each stream with greater values of
UAA and TWI are predicted to have greater subsurface lateral inflow and remain wet

longer based on their topographic position and local slope.
3.3.3.3: Statistical Analysis

We analyzed the hysteresis metrics (HI and FI) between seasons using a Welch’s
F-test. This approach was selected because a Levene’s test indicated that the distribution
of seasonal hysteresis metrics had unequal variances. The assumption of normality for
both hysteresis metrics was assessed visually using Q-Q plots and were reasonably
satisfied. To account for unequal variance, seasonal differences in both HI and FI were

assessed using the Games-Howell post-hoc multiple comparisons method in the rstatix
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package (Kassambara, 2021). Differences in mean storm characteristics measured at both

weather stations were assessed using paired t-tests.

To assess potential drivers of either HI and FI, we included 30 predictor variables
in a correlation matrix, including variables describing storm, hydrologic, and topographic
characteristics (Table AS). We chose the variables a priori based on knowledge of
potential drivers of stream temperature behavior during storm events. To assess the
relationships between the variables and the hysteresis metrics, we created a correlation
matrix using the R package corrplot (Wei et al., 2017). As part of this correlation, we
included both the HI and FI values, and the absolute value of HI and FI values to assess
what variables may drive the direction (positive or negative) and magnitude (absolute
value) of stream temperature hysteresis. We calculated the Spearman’s rank correlation
coefficient, p, because the distribution of many predictor variables were non-normally
distributed (Spearman, 1904). The Benjamini & Hochberg p-value adjustment for
multiple comparisons was used to minimize the false discovery rate (Benjamini &
Hochberg, 1995). All data exploration, quality control, and statistical analysis were

conducted in R version 3.6.1 (R Core Team, 2020).
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3.4: Results

3.4.1: Storm Characteristics

During the 2020 water year, ~1,431 mm of rain fell in the Tectah Creek
catchments and ~1,402 mm fell in the McGarvey Creek catchments. Relative to the 30-
year average annual rainfall, precipitation during this year in these catchments
represented only 50% in Tectah Creek and 70% in McGarvey Creek, respectively
(Oregon State PRISM, 2021).

In total, we selected up to 23 storm events across the 10 catchments to analyze the
stream temperature response. The storm events ranged in magnitude from 10.6 to 79.2
mm (35.4 = 17.5 [SD] mm), with storm durations between 5.8 and 76.8 hours (24.4 +
14.5 hr), and average intensities from 0.57 to 4.37 mm hr! (1.7 = 0.83 mm hr'!) (Table
A4). Two of the 23 events occurred during the late summer when antecedent moisture
conditions and baseflow were at their annual low. Four events occurred during early fall
(October—November), that represents a transitional period where average soil moisture
increased from 0.17 m*/m?> to 0.25 m*/m> and average air temperatures decreased from
14.8 °C to 11.6 °C compared to September (Figure 3.3). December and January were the
wettest and coldest months over the study period (average soil moisture = 0.30 m*/m?,
average air temperature = 5.7 °C) containing nine of the 23 analyzed storms and half of
the total rainfall (50% at the North rain gauge and 51% at the South rain gauge). February
was uncommonly dry, with only ~35 mm total precipitation, which represents ~15% of
the 30-yr average. Despite how dry it was, we still captured one storm event during this
time, which represented a period of low antecedent precipitation conditions (Table A4).
The seven remaining events occurred during spring in April and May, when soil moisture
remained elevated but air temperatures warmed (average soil moisture = 0.29 m>*/m?,

average air temperature = 11.1 °C).

The 14-day antecedent precipitation conditions prior to the storm events followed
a seasonal pattern across both the Tectah and McGarvey catchments. Specifically, the
lowest antecedent precipitation occurred during the summer and early fall and highest

antecedent precipitation occurred during mid-winter (Figure 3.4B). Volumetric soil water
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content data from soil moisture probes installed at three depths adjacent to the south
weather station confirmed this trend in subsurface moisture, with the annual high
occurring during mid-January (0.33 m*/m?), and low occurring prior to the first
significant rain event in September 2019 (0.11 m*/m?) (Figure 3.3). In general, the
average rainfall intensities and maximum rainfall intensities were greatest during early
season storms and decreased through the wet season (Figure 3.4C and 3.4D). Statistically,
there was no evidence that mean storm depth (t = 0.79, p = 0.43), 14-day antecedent
rainfall (t = -0.26, p = 0.80), or average rainfall intensity (t =-0.31, p = 0.76) were
different between the two meteorological stations. There was weak statistical evidence
that maximum 1-hr rainfall intensities (t = 1.75, p = 0.09) were different between our two
meteorological stations, however the mean difference between stations was small (1.05
mm/hr) and likely not substantial. Therefore, storm characteristics did not meaningfully

differ across the study area.

3.4.2: Catchment Scale Analysis of Hysteresis Metrics

Hysteresis analysis yielded up to 12 HI values per stream for each storm,
corresponding to each stream temperature measurement location. HI values varied in
direction and magnitude between season, storm, and catchment. Positive HI values,
indicating clockwise hysteresis, generally occurred during summer and spring events.
Negative HI values, or anti-clockwise hysteresis, mainly occurred during fall and winter

events (Figure 3.5).

The average HI value for summer events across all 10 catchments was 0.15 + 0.25
(SD), but decreased during fall events to -0.06 + 0.36. The average HI value for winter
events was also negative at -0.18 £ 0.27, but was positive for spring events at 0.05 + 0.26
(Table 3.2). Statistically, the Games-Howell post-hoc multiple comparisons tests
indicated strong evidence that mean HI values across all 10 catchments were different
among all seasonal combinations. The largest difference in mean HI values were between
summer and winter events (p < 0.001, difference: 0.34, 95% CI: 0.29-0.39), and smallest
between summer and spring events (p < 0.001, difference: 0.11, 95% CI: 0.05-0.16).



“BaIR
Apmis yejoo ], 9y} Ul Uone)s [eor30[0I0}0W IN0S Y} Je dInjerodwd) J1e pue Juojuod Idjem [10S JLdWN[oA ‘Uonendiodld *¢*¢ 3ansiy

e

67-50-070T +0-S0-0207 60-+0-0Z0T SI-€0-0TOT 61-T0-0T0T ST-10-0T0T IE-TI-610T 90-TI-610T TI-TI-6107 LI-OI-610T TT-60-610T £
Lo ﬂ

=

=

org

=

FOT =

&

0g ~

8

LT

I 10
W 0f - - 72
O] . s
md=q o =
_ g
0 A

g
=

a
—&
B
lrz_
LE0 B

o=

=

e

g,

-

LT m

=

o VI Woe ot Ll i Il | )

12



"(;-4Y ) AJISUSUT [[BJUTRT INOY-SUO WNWIXEW ((]) pue (1Y W) A}ISusjul [[ejurel
d3e1dAe (D) ‘(ww) [rejures Juapadue Aep-11 (g) ‘(wwr) ydop wirols (V) ‘suone)s [ed130[0109jowW (Yeidd]) JInos pue (AAIBDHIIN)
YHON 9Y)} Y10q I0§ 9yep uuiols £q 0Z0T ‘0€ ABIN PUB 610T ‘S T 10quiadog usomiaq sonsiess dARdIIOSap JUIAS ULI0)S *p*¢ 3INJL

$9

2] WLIOIS 2] WLIO)S
S0-020¢ £0-0202 10-0202 11-6102 S0-020¢ £0-0202 10-020¢ 11-610€
L] L]
: N ... . =
W o o FT =
- B . * s °
st -
3 i FE = 3 . . T
b I =] . S .
= . . % P
P oa L . ~ = . . oo
1 o Lz B
B . =4
=4 =
- - .vlu. —
off . £ g
o [~ 1 o
L 01 m ° e 2
w £,
& -
s =
£ g
=1 - u
mu . =y
= —
. R
a o)
S0-020¢ £0-0202 10-020¢ 11-610€ S0-020¢ £0-0202 10-020¢ 11-610€
L] . . L] L] - r ﬁ_ & % L]
—
- . L] . 0T
1 L]
(=N 4 L] L] L] .
g : .
w
4 - = FOF W L] 2 m.r
: : : A : 5
. - - OF
8 : g
- m 2 .@
- - -
= =
- L] F 08 M m
= . L =
pnos .« = R
— i
JUON E
=
UonelsS IRjea e
FOCT
g i (% vy




99

0 i 0

"/ = u 3unds (g = u JUIM {9 = U [[B] {7 = U JOWWNS :PILIBA UOSBIS OB Ul PIZAJeUR
SULIO}S JO JdquUNu Y], "U0seds Aq padnoid ‘weans yoed 10j paunseaws sanjeA ([H) XPpul SISAIISAY JO uonnqrisi(q *S°¢ 3Ingiy

sundg R

noseag
-870-
570"
=
7
I
T
-
-00 @
")
=
(=1
m
x
L 570
&




67

These general seasonal trends were subject to variability from stream to stream.
As an example, HI values during fall storms were the most variable among the 10
catchments (SD: 0.36). During these events, streams 13 and 14 had average HI values
greater than zero (0.11 and 0.09, respectively), indicating weak clockwise hysteresis,
while nearby stream 11 had an average HI value of -0.32, indicating anti-clockwise
hysteresis behavior. For the remaining seasons, stream-average HI values were either all
positive (for summer and spring, except streams 14 and 15 in spring) or all negative

(winter) (Table 3.2).

In contrast to HI values, season-average flushing index (FI) values were
consistently positive across seasons, with the exception of streams 13 and 18 (Figure 3.6).
This indicates that stream temperatures in these catchments most commonly increased on
the rising limb of the storm hydrograph, likely indicating a weak flushing of heat from
the catchment. Season-average FI values were highest during summer events (0.30 +
0.35) and decreased through fall and winter to a seasonal low in spring (0.10 &+ 0.33)
(Table 3.2). FI values in stream 13 were consistently negative across seasons, with the
exception of spring, when data could not be collected due to equipment failure.
Statistically, the results of the Games-Howell multiple comparisons test indicated that
there was no evidence that season-averaged FI values were different between fall and
winter (p = 0.15). However, there was suggestive evidence that season average FI values
were different between summer and fall (p = 0.07) and strong evidence that they differed

between summer and spring (p < 0.001, estimate: 0.21, 95% CI: 0.14-0.28).
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Table 3.2. Seasonal hysteresis statistics for the study period. Avg.: Average, Std.: Standard
Deviation, HI: Hysteresis Index, FI: Flushing Index.

Stream

Metric  Season 1 2 3 4 5 11 13 14 15 Overall
Average
Summer 0.13 0.09 0.2 021 015 0.00 008 0.19 024 024  0.15
Avg. Fall 005 614 011 010 002 o032 011 009 44 000 -0.06

HI ‘ . - - - - - - - - i}
Winter —-0.08 550 033 015 004 030 015 028 o014 014 -0.I8
Spring  0.03  0.09 005 0.03 017 004 - U5 oop 008 005
Summer 027 020 027 022 024 033 041 022 021 014 025
g TN 028 035 029 038 032 045 044 040 029 042 036
' Winter 020 031 024 031 036 020 027 037 024 020 027
Spring 027 023 030 029 023 023 - 024 026 029 026
Summer 0.38 028 036 041 024 046 50 042 018 023 0.28
Avg. Fall 026 039 026 029 033 028 7. 001 026 -005 0.9

FI -

Winter 028 036 035 031 019 004 o0 006 015 -004 0.6
Spring  0.06 0.05 002 0.15 0.9 017 - 0.10 0.11 008  0.10
Summer 028 0.1 030 024 032 027 0.66 059 024 044 034
G gy Al 044 041 047 034 042 034 046 052 018 038 040
' Winter 045 046 027 048 0.13 054 052 023 042 049  0.40
Spring 032 037 030 035 040 032 - 025 026 035 033
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For 12 of the 23 storms analyzed (52%), all catchments exhibited a similar stream
temperature hysteresis pattern across both the Tectah and McGarvey watersheds (Table
3.3). As well, for seven of the 23 events, all but one or two streams exhibited the same
hysteresis pattern (82% of storms total). As an example of this consistent intra-catchment
behavior, for the summer 24 mm storm on 2019-09-15 (43 mm measured at the North
weather station) with low antecedent moisture (~8 mm 14-day antecedent rainfall), the
average HI value was 0.25 across all 10 catchments, with a standard deviation value of
just 0.12 (Figure 3.7). Similarly, the winter 48 mm event (65 mm at the North weather
station) on 2020-01-16 with high antecedent moisture (~190 mm 14-day antecedent
rainfall) had an average HI values of -0.42 and standard deviation of only 0.08. These
events represent different storm characteristics but were expressed similarly across the 10
study catchments, which was common for the storms analyzed herein (Figure 3.7). The
remaining four (18%) events exhibited both positive and negative hysteresis across all

catchments, resulting in average HI values near 0.

For majority (82%) of events, hysteretic behavior was similar across all the
catchments, however there were storm events occurring close in time that had very
different hysteresis behavior, indicating deviations from the seasonal trend described
above (Figure 3.7). For example, two of six (33%) fall events and one of eight (13%)
winter events had average HI values greater than 0, while the remainder had average HI
values less than 0. As an example, the 59 mm late fall event on 2019-12-21 (54 mm
measured at the North weather station) with high antecedent moisture (~150 mm 14-day
antecedent rainfall), had an average HI value of 0.37 + 0.10. Only a week later, during
the high-intensity 23 mm (19 mm at the North weather station) winter event on 2019-12-
29 with intermediate antecedent moisture (~76 mm 14-day antecedent rainfall), the
direction of hysteresis changed to anti-clockwise with an average HI value of -0.66 +
0.08. Interestingly, average air temperatures during the events were similar (5.14 and
5.55 °C for the 2019-12-21 and 2019-12-29 events, respectively), and average stream
temperatures were only marginally lower during the 2019-12-29 event (8.39 versus
9.48 °C). These events reflect the variability in stream temperature behavior during storm

events, even during subsequent storms.
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Storm-average FI values averaged across all streams were greater than zero for 14
of 16 events (88%) during the summer, fall, and winter, with the exception of one storm
during the fall (2019-12-21, average value =-0.12) and one storm during the winter
(2020-01-21, average value = -0.42) (Table 3.4). Four of the five (80%) late spring events
had negative average FI values (range from -0.03 to -0.27), indicating a loss of heat from
the catchment during the storm hydrograph rising limb (Figure 3.7). FI values were more
consistent across events than HI values; however, FI values also shifted rapidly from
positive to negative during the wettest portion of the mid-winter. During the 48 mm event
(65 mm at the North weather station) on 2020-01-16, the average FI value was 0.06 +
0.49, four days later it was -0.42 £+ 0.37 during the 26 mm event on 2020-01-21, 2 days
after that it was positive again with a value of 0.35 + 0.45 during the 20 mm storm on
2020-01-23. The events on 2020-01-21 and 2020-01-23 had very similar storm
characteristics, but different stream temperature behavior during the initial input of

precipitation (Table 3.4).
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3.4.3: Reach-Scale Analysis of Hysteresis Metrics

Along each of the 10 study streams, HI and FI values varied considerably from
sensor location to sensor location, leading to variable longitudinal behavior at the reach
scale between streams. The greatest reach-wide variability in both hysteresis metrics
occurred during the summer and early fall and decreased into the wet season across the
10 streams (Figure 3.8). During the two summer events, two streams had stream-level
standard deviation in HI values greater than 0.4 (mean SD = 0.18), while six had
variability less than 0.1. Variability in longitudinal HI behavior across the 10 streams
decreased during fall (mean SD = 0.10) and winter (mean SD = 0.05), and remained
below 0.15 through the spring events (mean SD = 0.04), indicating stream temperature
hysteresis behavior along each stream was more similar during winter and spring events
than those in summer and fall. The reach-scale variability in FI was similar to the
variability observed in HI, with higher variability in the summer (mean SD = 0.27) and
fall (mean SD = 0.19) than winter (mean SD = 0.11) and spring (mean SD = 0.08)
(Figure 3.8).

Figure 3.9 displays the longitudinal variability in stream temperature HI values
during all monitored storm events and provides additional evidence of seasonal variation
in hysteresis behavior. HI values along each stream generally became more similar as the
wet season progressed within and across streams, with the greatest variability during
summer and early fall. During summer and fall events, certain locations along streams
had positive hysteresis while others had negative hysteresis. For instance, during the
2019-09-15 storm, stream 1 exhibited clockwise hysteresis along the upper 150 meters of
the reach (first 4 data points) and anti-clockwise hysteresis for two locations downstream
between 100 and 50 meters upstream, and then clockwise hysteresis at the two most
downstream sensor locations over 50 meters. Later in the fall, during the 2019-11-26
storm, stream 1 exhibited the opposite behavior: anti-clockwise hysteresis in the upstream
150 meters of the monitored reach, and positive hysteresis in the downstream 150 meters
of the reach. However, other streams showed little or no longitudinal variability in
hysteresis behavior during any storms, even during summer and early fall. Stream 15, the

largest catchment included in the study (drainage area = 60 ha) exhibited the least
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longitudinal variability in HI, as measured by the mean longitudinal standard deviation in
hysteresis metrics across all storm events, in either HI values (mean SD = 0.03) or FI
values (mean SD = 0.05). Stream 2, one of the smallest catchments in the study (drainage
area = 30 ha) exhibited similar behavior, with mean standard deviation values of 0.04 for
HI values and 0.07 for FI values. Every location along these streams responded similarly
to precipitation inputs during events. This is in contrast to streams 13 and 14 (drainage
areas of 21 and 29 ha, respectively), which had the greatest overall longitudinal
variability, with mean standard deviation values of 0.14 and 0.13 for HI values and 0.34

and 0.20 for FI values, respectively.
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3.4.4: Comparison of Hysteresis Metrics to Meteorological and Topographic
Characteristics

Results of the Spearman rank correlation matrix revealed strong linear
correlations between hysteresis metrics and storm and meteorological conditions (Table
3.5). HI values were most strongly correlated with predictors describing the magnitude
and variation of air temperature before and during storm events. The strongest predictors
of the hysteresis index direction were the air temperature change during the rising limb of
the storm event (p = -0.49), indicating that hysteresis was generally anti-clockwise
(indicating stream warming) when air temperatures warmed during the event and
clockwise (indicating stream cooling) when air temperatures decreased during the event
(Figure 3.10B). HI values were also negatively correlated with flushing index (p =-0.35),
initial stream stage (p = -0.15), and peak stream stage (p =-0.15). HI values were
positively correlated with the initial difference between stream and air temperatures (p =
0.49), initial air temperature (p = 0.48), initial stream temperature (p = 0.34), and peak air
temperature (p = 0.19). Comparatively, FI values were positively correlated with the air
temperature change during the rising limb of the storm event (p = 0.54) indicating that
stream temperatures generally increased during the rising limb of the hydrograph when
air temperatures also increased (Figure 3.10E). FI values were negatively correlated with
HI index values (p =-0.35), initial stream temperature (p = -0.35), initial air temperature
(p =-0.30), average rainfall intensity (p = -0.27), and the difference between stream and

air temperatures at the start of the event (p =-0.23).

For events with clockwise hysteresis (HI > 0), initial air temperatures were 2.4—
3.0 °C warmer on average, than those exhibiting anti-clockwise hysteresis (1 =-19.2, p <
0.001) (Figure 3.10A). Similarly, for events with anti-clockwise hysteresis, air
temperatures on average increased by 1 °C during the event, while those with clockwise
hysteresis decreased on average by 0.8 °C (¢ = 22.9, p <0.001). This indicated a reliance
of hysteresis behavior during storm events on meteorological conditions both prior to and

during the storm event.

Initial air temperatures were 1.7-2.3 °C cooler for events with positive FI values

(indicating warming during the event), than for events with negative FI values (r =13.4, p
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<0.001) (Figure 3.10D). This indicates that stream temperatures decreased during storm
events more often during warmer parts of the year (summer and spring) than during
cooler portions of the year (fall and winter), potentially due to cold frontal events or fog
during the summer and early fall that bring cooler air temperatures. Unsurprisingly,
stream temperatures increased during storm events when air temperatures increased
through the event. On average, air temperatures increased by 1.1 °C when FI was positive
and decreased by 1.1 °C when FI was negative (¢ =-29.1, p <0.001) (Figure 3.10E).
Average rainfall intensity was also marginally higher (0.26-0.40 mm hr'!; 1 =9.02, p <
0.001,) during events with negative FI values than positive FI values (Figure 3.10F).

Interestingly, we did not find correlations between topographic metrics and the
hysteresis indices (HI or FI). Even when hysteresis metrics were split into seasonal
groups, there were no strong correlations between UAA, TWI, FWS, or other computed
topographic metrics and either of the hysteresis metrics. This indicated either a lack of
linear dependence of HI or FI values on the derived topographic metrics, a failure of the
derived metrics to properly characterize subsurface hydrological processes influencing
stream temperature change in the study catchments, or that stream temperature change

during events is influenced primarily by other factors.
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3.5: Discussion

We observed a seasonally variable relationship between stream temperature and
stormflow, with clockwise hysteresis occurring during summer and spring and anti-
clockwise hysteresis occurring during fall and winter storm events. This indicates that
during summer and spring, when stream temperatures are generally cooler than air
temperatures, stream temperatures warm on the rising limb and cool on the falling limb
of the storm hydrograph, potentially due to accumulated heat in the catchment during
preceding days that is flushed to the stream during the initial onset of precipitation
(Kobayashi et al., 1999; Wilby, Johnson, & Toone, 2014) or subsequent reconnections
with groundwater flow paths on the falling limb that input cool ground water (Lange &
Haensler, 2012). This initial warming during summer and spring storm events may also
be due to accumulated warm water within the narrow riparian zone or permanent
saturated areas that gets pushed into the stream via groundwater ridging (e.g., Sklash &
Farvolden, 1979). Alternatively, flushing index values were generally positive, indicating
that storm events input heat to the stream during the rising limb. FI values did not show a
clear seasonal trend; however, on average, FI values were highest in summer and

decreased through the wet season, to reach a low during spring.

During fall and winter when hydrologic connectivity is greatest and air
temperatures are cooler than stream temperatures, the observed anti-clockwise hysteresis
indicates that stream temperatures are cooler on the rising limb and warmer on the falling
limb of the storm hydrograph, potentially due to the reconnection of deep groundwater
flow paths that input comparatively warm groundwater (Kobayashi et al., 1999; Lange &
Haensler, 2012). If we assume that deep groundwater temperatures can be approximated
by adding 1-2 °C to mean annual air temperatures (Ficklin, Luo, Stewart, & Maurer,
2012, but see Leach & Moore, 2015), then deep groundwater temperatures should be
within the range of 12-13 °C for this region. Input of groundwater in this temperature
range during the falling limb of all the observed fall and winter storm events would cause
stream warming, and confirm the anti-clockwise behavior observed herein. This behavior
may also be due to a combination of direct rainfall into the channel and throughflow from

adjacent hillslopes, such as those derived from longer flow paths that do not activate until
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later in the storm event when full hillslope-riparian-stream connectivity is reached (Penna
et al., 2015; Uchida et al., 2002; Van Meerveld et al., 2015). Indeed, during times of
maximum hydrologic connectivity preferential flow paths can deliver groundwater from
upper hillslopes that influence stream temperatures (Uchida et al., 2002). It is likely that
for storms during the wettest part of the year, subsurface water is sufficiently mixed prior

to emerging in the stream that these lateral inputs can cause localized warming.

Other studies have observed similar stream temperature hysteresis behavior.
(Kobayashi et al., 1999) paired stream temperature and specific conductance
measurements and observed clockwise stream temperature hysteresis during an early fall
storm, while specific conductance exhibited anti-clockwise hysteresis. The authors
suggest that increasing inputs of shallow subsurface flow on the rising limb warmed
through the soil, increasing stream temperatures, and simultaneously diluted specific
conductance in the stream. After the storm peak, specific conductance increased and
stream temperature decreased, indicating that the contributions from shallow sources
decreased and inputs from deeper groundwater cooled the stream. This may have been
the mechanism causing stream warming (positive FI values) during summer and spring
events in this study, however it does not explain why temperatures increased on the rising
limb during fall and winter. Subehi et al., (2010) observed seasonally variable stream
temperature hysteresis across 16 forested watersheds (0.5 to 100 ha) in Japan, with
clockwise hysteresis during spring and summer seasons and anti-clockwise hysteresis
during fall and winter, which is similar to the trend observed herein. The authors
conclude that watershed slope and the magnitude of streamflow change during storm
events had a greater effect on stream temperature change during storm events than air
temperature change by influencing shallow subsurface flow paths. However, this is
contrary to our study, which did not find watershed slope or the magnitude of the stream

stage response to be a meaningful predictor of hysteresis direction or magnitude.

During both warm and cool seasons, the direction of hysteresis appears to be
driven partly by the gradient between stream and air temperatures and direction of air
temperature change during events (Figure 3.10). This is similar to recent work, where

Oware & Peterson, (2020) measured seasonally variable thermal gradients during storm



86

events, with stream and hyporheic substrate temperatures increasing during summer
storms and decreasing during winter storms. During warm season storm events when the
direction of the thermal gradient is from the air to the stream, stream temperatures
initially increased during events, resulting in clockwise hysteresis. This was true for our
study. For instance, the pre-storm thermal gradient between stream and air temperatures
was positively correlated with HI values (p = 0.49), indicating that the magnitude of
stream temperature hysteresis was largest during events with the largest temperature
gradient between the stream and overlying air. If we assume air temperatures
approximate rainfall temperatures (Gerecht, 2012; Shanley & Peters, 1988), this indicates
transfer of heat from rainfall to soil to stream, likely through shallow subsurface inputs
and direct channel interception, driven primarily by the gradient between stream and air
(rainfall) temperatures. In addition, stream temperature hysteresis was negatively
correlated with air temperature change during the event (p = -0.49), indicating that stream
temperatures generally reflected the direction of air temperature change during storm
events (e.g., stream temperatures warmed (cooled) when air temperatures warmed

(cooled)).

Our results also indicate that the stream temperature response to precipitation
inputs is the most variable along streams during the driest period of the year.
Longitudinal variability in HI and FI values was greatest during the summer and
decreased through the fall and winter. This is likely because low flows in the late summer
lead to greater longitudinal thermal heterogeneity than during wetter portions of the year
(Leach et al., 2016), where stream temperature may be dominated by discrete
groundwater sources or hyporheic exchange that buffers the response to storm flow
(Leach et al., 2017; Lowry et al., 2007). Once groundwater levels began to rise during the
onset of the wet season and watershed storage thresholds became satisfied (e.g., Detty &
McGuire, 2010), stream temperatures along these streams became more homogeneous,
and more synchronous in their response to storm flow. At the same time, runoff
generation during events likely shifts from shallow subsurface sources to deeper, longer
groundwater flow paths that are now connected (Lange & Haensler, 2012). This behavior

could also be explained by differences in the dominant energy exchanges influencing
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stream temperature change between summer and winter. During summer, when flows are
low and solar radiation dominates the stream temperature energy budget (Hebert et al.,
2011; Leach & Moore, 2010), small discrepancies in canopy cover and variable stream
geomorphology can lead to localized warming and cooling that influences the stream
temperature response to storm flow (e.g., some areas along these streams warm during
storms while others cool). Alternatively, during winter, energy exchange primarily occurs
through hillslope advection, not solar radiation, because of persistent cloud cover and low
solar angles (Leach & Moore, 2014). In addition, streamflow is higher during winter and
spring, which leads to greater water depths and velocities. This increases the energy
required to alter stream temperatures, and because less energy is available and residence

times are reduced, stream temperatures become more homogeneous along each stream.

Topographic metrics derived herein may not have been able to explain variability
in seasonal stream temperature hysteresis behavior for a number of reasons. First, GPS-
derived sensor locations may have been incorrectly recorded and adjusted to the derived
channel network and thus do not provide a meaningful comparison to the actual behavior
at each monitoring location. However, our methodology included an assessment of
variability for each metric upstream and downstream of the assumed location of each
temperature sensor, so we feel confident that this represents our best estimate of the true
sensor location on the derived stream channel. It may have also been because during
many of monitored storm events (during winter and spring) HI and FI values measured at
each stream temperature monitoring location were too similar within and among streams
to find a link to site-level topographic metrics that were more variable (e.g., Figure 3.9,
storms on 2020-04-04 and 2020-05-02). It may also have been because hysteresis
behavior was so variable from storm to storm due to the overriding effects of changing
meteorological and storm characteristics that it prevented properly detecting a
topographic influence. This is important considering these topographic metrics (UAA,
TWI, and FWY) are static in time (Grabs, Seibert, Bishop, & Laudon, 2009; Leach et al.,
2017), and do not change with temporally variable catchment scale wetness conditions
and hydraulic gradients that influence stormflow generation and thus stream temperature

behavior during storms. Another option is that stream temperature behavior during storm



88

events in this region simply are not an expression of local surface topography at the
scales we investigated, and may rely more on regional meteorological conditions such as
air temperature changes and cloud cover (Wilby et al., 2015) or subsurface bedrock
topography (Tromp-Van Meerveld & McDonnell, 2006). For instance, in a steep forested
watershed in Georgia, USA, Freer et al., (2002) found values of UAA and TWI
calculated for bedrock topography to be better predictors of subsurface flow during storm
events than metrics derived for surface topography. It is likely that for this region, the
overriding effects of seasonally variable meteorological conditions and complex
subsurface topography limited the usefulness of temporally static, topographically

derived metrics at explaining the stream temperature response to stormflow.

This study also has a few important limitations. The use of single point
precipitation measurements on two adjacent ridges likely resulted in under
characterization of the in-stream temperature response to precipitation, as single point
precipitation measurements are known to cause error when extrapolated across entire
catchments (Croghan et al., 2019). Although storm characteristics were not found to be
meaningfully different between rain gauge locations, catchment-scale differences in
vegetation likely influence the amount of hydrologic input driving stormflow that was not
accounted for. In addition, measurement of rainfall water temperature would have been
valuable to better understand whether the observed hysteresis is due to variable
subsurface flow paths or whether stream temperature change during storm events is
simply a reflection of rainfall temperature, especially for events early in the wet season
when shallow subsurface pathways likely dominated. As well, hysteresis metrics for each
stream temperature monitoring location within each stream were calculated using the
same time series of stream stage, measured at the downstream catchment outlet. Although
this likely provides a reasonable estimate of the streamflow response at each stream
temperature measurement point, installation of additional level loggers and additional
measurements of stream discharge along each study reach would have provided more
accurate calculation of these metrics, and likely provided a better explanation of the
variable hysteresis behavior observed along each stream. Future work should include

spatially distributed measurements of soil temperature at a range of depths and
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groundwater levels to further elucidate variable runoff generation mechanisms using
stream temperature as a tracer and provide additional evidence that metrics describing the
hysteresis of stream temperature during storm events correlates well to measurements
upslope. Additional analysis is required to determine whether hysteresis metrics using
stream temperature and stormflow could be used to assess the influence of forest
harvesting or other disturbances on stream flow response, potentially providing an
additional method of quantifying the effects of reach scale perturbations on hydrologic
processes in forested headwaters (e.g., Mistick & Johnson, 2020).

3.6: Conclusions

We evaluated the seasonal stream temperature response to stormflow across 23
storm events and 10 forested headwater catchments outfitted with spatially distributed
stream temperature sensors in the Northern California coast range during the 2020 water
year. We used hysteresis metrics to quantify the magnitude and direction of stream
temperature change and used correlation analysis to assess what meteorological,
hydrological, and topographic characteristics influence stream temperature change during
storm events. Our results indicate that the stream temperature response to stormflow is
seasonally variable and exhibits clockwise hysteresis during the summer and spring when
air temperatures are warmer than stream temperatures and anti-clockwise hysteresis
during the fall and winter when air temperatures are cooler than air temperatures. In
addition, the stream temperature response to stormflow was the most variable across
these 10 catchments during the late summer and early fall, when catchment-scale wetness
conditions and streamflow were at the annual low. As the wet season progressed, stream
temperature behavior across these 10 catchments became more similar, and remained
coupled through the late spring. The magnitude and direction of stream temperature
hysteresis was well correlated with the gradient between stream and air temperatures at
the start of the event, and air temperature change during the storm rising limb, indicating
the role of regional meteorological conditions on stream temperature change during storm
events. None of the derived topographic metrics describing the preponderance of
saturated areas and lateral inputs to streamflow were correlated with stream temperature

change during events, potentially because subsurface topography and seasonally variable
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catchment wetness conditions could not be properly characterized with these static
metrics describing surface topography. Future research should develop temporally-
dynamic topographic metrics that consider seasonally variable stormflow generation
processes and hydrologic connectivity, and use subsurface temperature and groundwater
level measurements across contributing hillslopes to better understand the runoff

production mechanisms that cause stream temperature change during storm events.
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Chapter 4: Synthesis

My results show that headwater streams exhibit distinct summer thermal regimes
and patterns of thermal sensitivity that vary regionally with underlying lithology likely
due to differences in the spatial extent and magnitude of groundwater flow. In addition,
during periods of low stream flow and soil moisture, the stream temperature response to
stormflow is the most longitudinally variable along headwater streams. This period of
large longitudinal variability often coincides with the warmest annual stream and air
temperatures, and lowest flows, and therefore the largest threat to aquatic species
downstream (Arismendi et al., 2013). Overall, headwater stream sensitivity to
atmospheric energy exchanges and responsiveness to precipitation inputs varies
longitudinally, and riparian forest management should reflect this variable behavior. This
may be considered in the context of riparian management prescriptions, to reduce the
impact of contemporary forest harvest, or to use riparian corridors as climate refuges in
the face of climate change. This chapter focuses on the question: how can we use these
results in the context of riparian forest management to improve the way we manage

headwater stream thermal regimes?

Across the US, riparian protections implemented to limit changes to headwater
stream thermal regimes and preserve aquatic habitat are homogeneous across diverse
regions managed by centralized (i.e., state level) organizations (Broadmeadow & Nisbet,
2004; Lee, Smyth, & Boutin, 2004). For instance, riparian buffer prescriptions may be of
fixed width and identical for two similarly sized streams located in contrasting regions
with diverse lithology, climate, and vegetation. This “one size fits all” approach is often
variably effective at protecting stream temperatures (Bowler, Mant, Orr, Hannah, &
Pullin, 2012; Martin, Kroll, & Knoth, 2021; Sweeney & Newbold, 2014), and does not
consider the heterogeneity in thermal sensitivity or streamflow generation processes that
exist along headwater streams (Kuglerova et al., 2014; Martin et al., 2021). Recent work
has also highlighted that headwater stream thermal regimes are influenced by land area
much larger than that commonly protected by riparian buffers, limiting their effectiveness
across seasons and with changes in hydrological connectivity to adjacent hillslopes (Dick,

Tetzlaff, & Soulsby, 2018). For these reasons, there is a need to improve upon the fixed-



92

width buffers commonly implemented similarly across diverse regions to tailor headwater
riparian management to individual streams. Alternative riparian management strategies
will become critical to minimize the influence of future climate warming on headwater

resources (Krosby et al., 2018; O’Briain et al., 2017).

A land-management perspective based on the theory of ‘hydrologic landscapes’
has been proposed to consider regional heterogeneity in climate, soils, geology,
topography, and vegetation that influences catchment-scale hydrology (Cowood et al.,
2017; Leibowitz et al., 2014; Tague et al., 2007; Winter, 2001). This concept can be used
to tailor research or management actions to account for spatial heterogeneity in hydrology
across regions (Winter, 2001). For example, there have been recommendations to guide
riparian forest management along headwater streams by considering spatially variable
hydrologic behavior such as groundwater inflow (Kuglerova et al., 2014; Story et al.,
2003; Tiwari et al., 2016) and by basing buffer design on geophysical factors known to
influence stream temperature, such as lithology, topography, and stream azimuth
(Dugdale, Malcolm, Kantola, & Hannah, 2018; Martin et al., 2021). Land managers
interested in preserving areas of cold water habitat in mountainous headwater streams
could adopt riparian management schemes that consider the hydrologic source of this
habitat and adjust operations and management along the most thermally sensitive and

responsive areas (Laudon et al., 2016).

One way to tailor riparian management across hydrologic landscapes may be by
installing variable-width riparian buffers (Kuglerova et al., 2014; Laudon et al., 2016;
Tiwari et al., 2016) to increase riparian protection at locations along streams most
susceptible to atmospheric energy exchange. Variable-width buffers can be designed to
expand along areas that require additional protection via shading or by excluding
equipment because of their unique hydrological character or potential to influence water
quality. This may include permanently saturated areas, steep slopes, locations with
riparian forest features, and topographically predicted groundwater discharge zones
(Anderson & Poage, 2014; Kuglerova et al., 2014; Laudon et al., 2016; Olson & Rugger,
2007). On the other hand, variable-width buffers could be designed to contract at

locations less sensitivity to atmospheric energy exchange (i.e., where topographic and
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bank shading is sufficient to limit radiative loading and increases in summertime stream
temperatures). This is one reason variable-width buffers have been considered more cost
effective than fixed-width buffers, considering protection is focused in certain locations,
such as wet areas of relatively low forest productivity (Tiwari et al., 2016) or areas that
grow primarily non-merchantable species. Therefore, variable-width buffers can
potentially help balance the economic demands of forest land managers and the

environmental demands of protecting aquatic resources.

However, areas of strong hydrological connectivity may not be topographically
predictable in all regions, such as shown in chapter three of this thesis and other literature
(e.g., Freer et al., 2002). This will require new methods to properly identify locations of
discrete groundwater inflow or thermal refuges in regions with steep, complex bedrock
and surface topography, or where shallow subsurface flow dominates streamflow (i.e.,
the Northern California Coast Range). One method may be to use field measurements of
longitudinal thermal sensitivity combined with site-level covariates to develop regionally
specific reach-scale models to help guide the placement of variable-width riparian
buffers. These models could incorporate data collected during the summer when
incoming thermal energy is greatest and stream temperature protection is most critical,
but also incorporate data on the spatial extent of catchment wetness during other seasons.
This approach has been used at the watershed-scale, to aid in the design of spatially
variable riparian buffers based on the extent of hydrologically sensitive areas (Gorsevski,
Boll, Gomezdelcampo, & Brooks, 2008). The authors used spatiotemporal soil-moisture
routing to assess seasonal changes in catchment wet areas to guide buffer width.
However, this effort did not focus on protecting stream temperatures. Others have used
similar methods to define machine exclusion zones in near-stream areas to minimize
sediment pollution during forestry operations (Arp, 2009). Another emerging application
that could be used to guide riparian management are spatially distributed models that
predict radiative loading to the stream under different riparian vegetation scenarios, such
as Penumbra (Halama et al., 2018). In addition, thermal satellite imagery and thermal
infrared remote sensing technology can be used across a range of spatial scales to assess

locations of groundwater discharge to aid in protection of thermal refugia (Sass, Creed,



94

Riddell, & Bayley, 2014; Wawrzyniak et al., 2016). Future efforts to optimize the width
and placement of riparian buffers should focus on developing models and tools that can
be used across hydrologic landscapes and incorporate easily accessible topographic and

atmospheric data.

Others contend that riparian buffers should provide additional shading along areas
with the most critical cold-water habitat even if stream temperatures are less sensitive to
changing atmospheric conditions at these locations (Kanno et al., 2014). This can involve
implementing buffers containing gaps that simultaneously fuel primary production and
provide shade where it is most needed (Benda, Litschert, Reeves, & Pabst, 2016; Coats &
Jackson, 2020; Newton & Ice, 2016; Swartz, Roon, Reiter, & Warren, 2020). Site-
specific prescriptions will depend on management goals (e.g., prescriptions targeting
large wood recruitment and shade provision, Benda, Litschert, Reeves, & Pabst, 2016).
However, the effects of site-specific or variable width regulations on longitudinal
headwater stream temperature dynamics and the response to precipitation require
additional study (Martin et al., 2021). This is because most variable-width buffer work
has focused on boreal regions (Kuglerova et al., 2014; Laudon et al., 2016; Tiwari et al.,
2016), with limited consideration of stream temperature. However, the very limited
results in forested headwater streams are promising. In western Oregon, Anderson &
Poage (2014) determined that variable-width buffers designed to encompass the extent of
riparian forest features (20.2-29.5 m wide) were suitable to maintain streambed

temperatures similar to unharvested reference streams.

As forest harvesting has been measured to increase air temperatures 3-6 °C and
soil temperatures 10-15 °C (Moore et al., 2005a), the potential for increases in stream
temperature related to forest harvest is greatest for thermally sensitive locations and
geomorphic features within streams. Indeed, higher thermal sensitivities have been
measured in streams with open versus forested canopy, indicating the effect of radiative
and convective warming are cumulative (Simmons et al., 2014). Thus, the impact to
shallow subsurface sourced streams such as those in the Northern California Coast Range
will likely be greater than to those sourced from deeper groundwater sources or snowmelt

(Mayer, 2012) such as those draining the Cascade Range. Overall, there is a critical need
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for more effective, dynamic riparian protections that are specific to a given hydrologic
landscape, considering the spatial heterogeneity in hydrological and atmospheric
processes that influence stream temperature. Riparian regulations should consider the
dynamic vegetation, lithology, and soil characteristics present in the riparian zone
(Kuglerova et al., 2014) and represent the gradient of riparian forest composition such
that exists on a landscape unaffected by anthropogenic disturbances (Kreutzweiser,

Sibley, Richardson, & Gordon, 2012).

There is also potential for the hysteresis indices used in chapter three to be used to
analyze the effects of forest harvest on streamflow generation processes using stream
temperature as a tracer. Monitoring the instream response of stream temperature and
quantifying the post-harvest change in temperature-discharge hysteresis behavior may
provide insight into the influence of forest harvesting and effectiveness of riparian buffers
on minimizing changes to stormflow generation and stream temperature dynamics. After
forest harvest, hillslopes denude of vegetation can transmit precipitation more quickly to
the receiving stream as canopy interception and evapotranspiration are drastically
reduced across the harvested area (Moore & Wondzell, 2005). The influence may be even
greater in situations where topographic slope allow ground-based operations to compact
soils on hillslopes or in the near stream zone, potentially increasing the proportion of

runoff entering the stream as overland flow (Zemke, Enderling, Klein, & Skubski, 2019).

It is expected that compared to pre-harvest conditions, hysteresis index and
flushing index values measured during similar events would be greater in magnitude
post-harvest. This is likely due to a combination of 1) faster transmission of rainfall to the
channel via direct channel interception as hillslopes and potentially riparian areas have
less overhead vegetation (Moore & Wondzell, 2005), 2) greater shallow soil temperatures
due to adsorption of solar radiation (Anderson, Larson, & Chan, 2007; Moore et al.,
2005a), 3) alteration of subsurface flow pathways due to the removal or modification of
macropores and preferential flow pathways (Moore & Wondzell, 2005; Puntenney-
Desmond, Bladon, & Silins, 2020), and 4) increased proportion of overland flow if soil
compaction results in decreased infiltration capacity (Zemke et al., 2019). These factors

may also coalesce and cause potentially biologically significant increases in stream
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temperature during storm events, especially during summer events when air temperatures
are high and catchment wetness is low (Lange & Haensler, 2012; Wilby et al., 2015) and
runoff is primarily sourced from the shallow subsurface and near stream areas (Penna et
al., 2015). Although the stream temperature response to storm events measured in chapter
three were not likely biologically meaningful, it is expected that following forest harvest,
increases in shallow throughflow temperatures due to accumulated solar radiation could
potentially cause short-term changes in stream temperature during storm events that
could cause acute stress to aquatic macroinvertebrates and fish (Hester & Doyle, 2011;

Somers et al., 2013).

The in-stream response to storm events for other water quality constituents, such
as dissolved organic carbon, has been measured to occur faster and be larger in
magnitude in a harvested catchment compared to an unharvested catchment using
hysteresis analysis (Mistick & Johnson, 2020). These authors attributed the increase in
response magnitude post-harvest to changes in the dominate flow paths, which could alter
both chemical and thermal water quality. For studies assessing stream temperature
change or the effectiveness of riparian buffer prescriptions following forest harvest, this
could be achieved by comparing hysteresis metrics between harvested and unharvested
catchments over a range of storm events. This is similar to the before-after-control-
impact design commonly deployed in studies assessing the influence of forest harvesting
activities on stream water quality (e.g., Groom, Johnson, Seeds, & Ice, 2017; Roon,

Dunham, & Groom, 2021).

Overall, future investigations into headwater stream temperature dynamics, the
response to storm flow, and the influence of alternative riparian management strategies

should address the following questions:

e How effective are variable-width riparian buffers that are designed to protect
locations along headwater streams with higher thermal sensitivity to changing

atmospheric conditions?
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Can we develop reach scale models to predict longitudinal thermal sensitivity
with easily accessible data on topography and meteorological conditions to inform

alternative riparian management?

How can regional lithology be incorporated into the design of alternative riparian

management strategies?

How does stream temperature hysteresis during storm events change after forest

harvest?

Can stream temperature hysteresis analysis be used to assess the influence of

forest harvest on stream temperature or the effectiveness of riparian buffers?

Can stream temperature hysteresis analysis during storm events be used to assess

changes in runoff production pathways after forest harvest?
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Figure A1l. Longitudinal distribution of daily mean summer stream temperatures
measured along each stream with the longitudinal linear regression equation
predicting average daily mean stream temperature from downstream distance (m)
shown to indicate downstream warming or cooling.
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Comparison of Hysteresis Metrics Using Stage Versus Discharge

An analysis was done to see whether or not hysteresis indices calculated using a
time series of discharge different significantly from those using a time series of stream
stage. We used paired t-testing to assess for differences in mean values using both
methods. Results of this analysis indicate that the true difference in mean values of both
the hysteresis index (p = 0.20, 95% CI: -0.016 — 0.077) and flushing index (p =0.11, 95%
CI: -0.12 — 0.013) were not significantly different than 0 between measurement methods
(using stage versus discharge). These results indicate that using measurements of stage

rather than discharge likely have a small effect on the outcome of our results.

01-501
Rating Curve

Stage (cm)

Figure AS. Fitted rating curve for stream 1 for data collected via salt dilution gauging up
to 2021-04-07. The resulting rating curve equation is Q = 0.0006139 * (stage - 9.37808) "
(4.03648), where Q is flow (L/s) and stage is in cm.
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Figure A6. Distribution of Hysteresis Index values measured with a timeseries of flow
(left) calculated using the rating curve in Fig. A4, versus using a timeseries of stage (right).

0.0-

Flushing Index

with flow with stage
Method

Figure A7. Distribution of Flushing Index values measured with a timeseries of flow (left)
calculated using the rating curve in Fig. A4, versus using a timeseries of stage (right).
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